snowclipsed
remove any text model initialization in weights.py
9308dfe
raw
history blame
7.59 kB
import safetensors
import torch
import torch.nn as nn
from contextlib import contextmanager
from typing import Callable, List
@contextmanager
def safetensors_open(safetensors_file: str):
"""
Simplify interfacing with safetensors files. Eliminates the need to ignore
type errors when using the `safe_open` function.
"""
with safetensors.safe_open(
safetensors_file, framework="pt"
) as st: # pyright: ignore
def get_tensor(name: str) -> torch.Tensor:
return st.get_tensor(name)
def get_keys() -> List[str]:
return st.keys()
get_tensor.keys = get_keys
yield get_tensor
def _load_weights(get_tensor: Callable[[str], torch.Tensor], model: nn.Module) -> None:
"""Internal function to load weights using a tensor getter function."""
model = model.to(dtype=torch.bfloat16)
vision = model.vision
region = model.region
weight_map = {
"vision_encoder.encoder.model.visual.patch_embed.linear.weight": vision[
"patch_emb"
].weight,
"vision_encoder.encoder.model.visual.patch_embed.linear.bias": vision[
"patch_emb"
].bias,
"vision_encoder.encoder.model.visual.pos_embed": vision.pos_emb,
"vision_encoder.encoder.model.visual.norm.weight": vision["post_ln"].weight,
"vision_encoder.encoder.model.visual.norm.bias": vision["post_ln"].bias,
"vision_encoder.projection.mlp.fc1.weight": vision["proj_mlp"]["fc1"].weight,
"vision_encoder.projection.mlp.fc1.bias": vision["proj_mlp"]["fc1"].bias,
"vision_encoder.projection.mlp.fc2.weight": vision["proj_mlp"]["fc2"].weight,
"vision_encoder.projection.mlp.fc2.bias": vision["proj_mlp"]["fc2"].bias,
"text_model.transformer.embd.wte.weight": model.text.wte,
"text_model.lm_head.ln.weight": model.text["post_ln"].weight,
"text_model.lm_head.ln.bias": model.text["post_ln"].bias,
"text_model.lm_head.linear.weight": model.text["lm_head"].weight,
"text_model.lm_head.linear.bias": model.text["lm_head"].bias,
"region_model.coordinate_encoder.weight": region["coord_encoder"].weight,
"region_model.coordinate_encoder.bias": region["coord_encoder"].bias,
"region_model.coordinate_decoder.fc1.weight": region["coord_decoder"][
"fc1"
].weight,
"region_model.coordinate_decoder.fc1.bias": region["coord_decoder"]["fc1"].bias,
"region_model.coordinate_decoder.fc2.weight": region["coord_decoder"][
"fc2"
].weight,
"region_model.coordinate_decoder.fc2.bias": region["coord_decoder"]["fc2"].bias,
"region_model.size_encoder.weight": region["size_encoder"].weight,
"region_model.size_encoder.bias": region["size_encoder"].bias,
"region_model.size_decoder.fc1.weight": region["size_decoder"]["fc1"].weight,
"region_model.size_decoder.fc1.bias": region["size_decoder"]["fc1"].bias,
"region_model.size_decoder.fc2.weight": region["size_decoder"]["fc2"].weight,
"region_model.size_decoder.fc2.bias": region["size_decoder"]["fc2"].bias,
}
for i in range(len(model.vision["blocks"])):
prefix = f"vision_encoder.encoder.model.visual.blocks.{i}"
blk = model.vision["blocks"][i]
weight_map.update(
{
f"{prefix}.norm1.weight": blk["ln1"].weight,
f"{prefix}.norm1.bias": blk["ln1"].bias,
f"{prefix}.norm2.weight": blk["ln2"].weight,
f"{prefix}.norm2.bias": blk["ln2"].bias,
f"{prefix}.attn.qkv.weight": blk["attn"]["qkv"].weight,
f"{prefix}.attn.qkv.bias": blk["attn"]["qkv"].bias,
f"{prefix}.attn.proj.weight": blk["attn"]["proj"].weight,
f"{prefix}.attn.proj.bias": blk["attn"]["proj"].bias,
f"{prefix}.mlp.fc1.weight": blk["mlp"]["fc1"].weight,
f"{prefix}.mlp.fc1.bias": blk["mlp"]["fc1"].bias,
f"{prefix}.mlp.fc2.weight": blk["mlp"]["fc2"].weight,
f"{prefix}.mlp.fc2.bias": blk["mlp"]["fc2"].bias,
}
)
for i in range(len(model.text["blocks"])):
prefix = f"text_model.transformer.h.{i}"
blk = model.text["blocks"][i]
weight_map.update(
{
f"{prefix}.ln.weight": blk["ln"].weight,
f"{prefix}.ln.bias": blk["ln"].bias,
f"{prefix}.mixer.Wqkv.weight": blk["attn"]["qkv"].weight,
f"{prefix}.mixer.Wqkv.bias": blk["attn"]["qkv"].bias,
f"{prefix}.mixer.out_proj.weight": blk["attn"]["proj"].weight,
f"{prefix}.mixer.out_proj.bias": blk["attn"]["proj"].bias,
f"{prefix}.mlp.fc1.weight": blk["mlp"]["fc1"].weight,
f"{prefix}.mlp.fc1.bias": blk["mlp"]["fc1"].bias,
f"{prefix}.mlp.fc2.weight": blk["mlp"]["fc2"].weight,
f"{prefix}.mlp.fc2.bias": blk["mlp"]["fc2"].bias,
}
)
for key, tensor in weight_map.items():
tensor.data.copy_(get_tensor(key))
region.coord_features.data.copy_(
get_tensor("region_model.coordinate_features.weight").T
)
region.size_features.data.copy_(get_tensor("region_model.size_features.weight").T)
def load_weights_from_safetensors(weights_file: str, model: nn.Module) -> None:
"""Load weights from a safetensors file into a MoondreamModel instance."""
with safetensors_open(weights_file) as get_tensor:
if (
"vision.blocks.0.attn.proj.bias" in get_tensor.keys()
or "model.vision.blocks.0.attn.proj.bias" in get_tensor.keys()
):
with safetensors_open(weights_file) as get_tensor:
tensors = {
k.replace("model.", ""): get_tensor(k) for k in get_tensor.keys()
}
model.load_state_dict(tensors, strict=False)
else:
# Wrap the get_tensor function to handle key normalization
name_map = {k.replace("._orig_mod", ""): k for k in get_tensor.keys()}
_load_weights(
lambda x: get_tensor(name_map[x]).to(dtype=torch.bfloat16), model
)
def load_weights_from_pt(weights_file: str, model: nn.Module) -> None:
"""Load weights from a PyTorch file into a MoondreamModel instance."""
device = str(torch.empty(0).device)
tensors = torch.load(weights_file, map_location=device, weights_only=True)
if "vision.blocks.0.attn.proj.bias" in tensors.keys():
missing_keys, unexpected_keys = model.load_state_dict(tensors, strict=False)
print("Missing keys:", missing_keys)
print("Unexpected keys:", unexpected_keys)
else:
tensors = {
k.replace("._orig_mod", ""): v.to(dtype=torch.bfloat16)
for k, v in tensors.items()
}
_load_weights(lambda x: tensors[x], model)
def load_weights_into_model(weights_file: str, model: nn.Module) -> None:
"""
Load weights from either a safetensors or PyTorch file directly into a MoondreamModel instance.
Args:
weights_file: Path to weights file (either .safetensors or .pt)
model: MoondreamModel instance to load weights into
"""
if weights_file.endswith(".safetensors"):
load_weights_from_safetensors(weights_file, model)
else:
load_weights_from_pt(weights_file, model)
# Make all parameters contiguous
for param in model.parameters():
param.data = param.data.contiguous()