File size: 7,594 Bytes
1c87faa 9308dfe 1c87faa 9308dfe 1c87faa 9308dfe 1c87faa 9308dfe 1c87faa 9308dfe 1c87faa 9308dfe 1c87faa 9308dfe 1c87faa 9308dfe 1c87faa 9308dfe 1c87faa 9308dfe 1c87faa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import safetensors
import torch
import torch.nn as nn
from contextlib import contextmanager
from typing import Callable, List
@contextmanager
def safetensors_open(safetensors_file: str):
"""
Simplify interfacing with safetensors files. Eliminates the need to ignore
type errors when using the `safe_open` function.
"""
with safetensors.safe_open(
safetensors_file, framework="pt"
) as st: # pyright: ignore
def get_tensor(name: str) -> torch.Tensor:
return st.get_tensor(name)
def get_keys() -> List[str]:
return st.keys()
get_tensor.keys = get_keys
yield get_tensor
def _load_weights(get_tensor: Callable[[str], torch.Tensor], model: nn.Module) -> None:
"""Internal function to load weights using a tensor getter function."""
model = model.to(dtype=torch.bfloat16)
vision = model.vision
region = model.region
weight_map = {
"vision_encoder.encoder.model.visual.patch_embed.linear.weight": vision[
"patch_emb"
].weight,
"vision_encoder.encoder.model.visual.patch_embed.linear.bias": vision[
"patch_emb"
].bias,
"vision_encoder.encoder.model.visual.pos_embed": vision.pos_emb,
"vision_encoder.encoder.model.visual.norm.weight": vision["post_ln"].weight,
"vision_encoder.encoder.model.visual.norm.bias": vision["post_ln"].bias,
"vision_encoder.projection.mlp.fc1.weight": vision["proj_mlp"]["fc1"].weight,
"vision_encoder.projection.mlp.fc1.bias": vision["proj_mlp"]["fc1"].bias,
"vision_encoder.projection.mlp.fc2.weight": vision["proj_mlp"]["fc2"].weight,
"vision_encoder.projection.mlp.fc2.bias": vision["proj_mlp"]["fc2"].bias,
"text_model.transformer.embd.wte.weight": model.text.wte,
"text_model.lm_head.ln.weight": model.text["post_ln"].weight,
"text_model.lm_head.ln.bias": model.text["post_ln"].bias,
"text_model.lm_head.linear.weight": model.text["lm_head"].weight,
"text_model.lm_head.linear.bias": model.text["lm_head"].bias,
"region_model.coordinate_encoder.weight": region["coord_encoder"].weight,
"region_model.coordinate_encoder.bias": region["coord_encoder"].bias,
"region_model.coordinate_decoder.fc1.weight": region["coord_decoder"][
"fc1"
].weight,
"region_model.coordinate_decoder.fc1.bias": region["coord_decoder"]["fc1"].bias,
"region_model.coordinate_decoder.fc2.weight": region["coord_decoder"][
"fc2"
].weight,
"region_model.coordinate_decoder.fc2.bias": region["coord_decoder"]["fc2"].bias,
"region_model.size_encoder.weight": region["size_encoder"].weight,
"region_model.size_encoder.bias": region["size_encoder"].bias,
"region_model.size_decoder.fc1.weight": region["size_decoder"]["fc1"].weight,
"region_model.size_decoder.fc1.bias": region["size_decoder"]["fc1"].bias,
"region_model.size_decoder.fc2.weight": region["size_decoder"]["fc2"].weight,
"region_model.size_decoder.fc2.bias": region["size_decoder"]["fc2"].bias,
}
for i in range(len(model.vision["blocks"])):
prefix = f"vision_encoder.encoder.model.visual.blocks.{i}"
blk = model.vision["blocks"][i]
weight_map.update(
{
f"{prefix}.norm1.weight": blk["ln1"].weight,
f"{prefix}.norm1.bias": blk["ln1"].bias,
f"{prefix}.norm2.weight": blk["ln2"].weight,
f"{prefix}.norm2.bias": blk["ln2"].bias,
f"{prefix}.attn.qkv.weight": blk["attn"]["qkv"].weight,
f"{prefix}.attn.qkv.bias": blk["attn"]["qkv"].bias,
f"{prefix}.attn.proj.weight": blk["attn"]["proj"].weight,
f"{prefix}.attn.proj.bias": blk["attn"]["proj"].bias,
f"{prefix}.mlp.fc1.weight": blk["mlp"]["fc1"].weight,
f"{prefix}.mlp.fc1.bias": blk["mlp"]["fc1"].bias,
f"{prefix}.mlp.fc2.weight": blk["mlp"]["fc2"].weight,
f"{prefix}.mlp.fc2.bias": blk["mlp"]["fc2"].bias,
}
)
for i in range(len(model.text["blocks"])):
prefix = f"text_model.transformer.h.{i}"
blk = model.text["blocks"][i]
weight_map.update(
{
f"{prefix}.ln.weight": blk["ln"].weight,
f"{prefix}.ln.bias": blk["ln"].bias,
f"{prefix}.mixer.Wqkv.weight": blk["attn"]["qkv"].weight,
f"{prefix}.mixer.Wqkv.bias": blk["attn"]["qkv"].bias,
f"{prefix}.mixer.out_proj.weight": blk["attn"]["proj"].weight,
f"{prefix}.mixer.out_proj.bias": blk["attn"]["proj"].bias,
f"{prefix}.mlp.fc1.weight": blk["mlp"]["fc1"].weight,
f"{prefix}.mlp.fc1.bias": blk["mlp"]["fc1"].bias,
f"{prefix}.mlp.fc2.weight": blk["mlp"]["fc2"].weight,
f"{prefix}.mlp.fc2.bias": blk["mlp"]["fc2"].bias,
}
)
for key, tensor in weight_map.items():
tensor.data.copy_(get_tensor(key))
region.coord_features.data.copy_(
get_tensor("region_model.coordinate_features.weight").T
)
region.size_features.data.copy_(get_tensor("region_model.size_features.weight").T)
def load_weights_from_safetensors(weights_file: str, model: nn.Module) -> None:
"""Load weights from a safetensors file into a MoondreamModel instance."""
with safetensors_open(weights_file) as get_tensor:
if (
"vision.blocks.0.attn.proj.bias" in get_tensor.keys()
or "model.vision.blocks.0.attn.proj.bias" in get_tensor.keys()
):
with safetensors_open(weights_file) as get_tensor:
tensors = {
k.replace("model.", ""): get_tensor(k) for k in get_tensor.keys()
}
model.load_state_dict(tensors, strict=False)
else:
# Wrap the get_tensor function to handle key normalization
name_map = {k.replace("._orig_mod", ""): k for k in get_tensor.keys()}
_load_weights(
lambda x: get_tensor(name_map[x]).to(dtype=torch.bfloat16), model
)
def load_weights_from_pt(weights_file: str, model: nn.Module) -> None:
"""Load weights from a PyTorch file into a MoondreamModel instance."""
device = str(torch.empty(0).device)
tensors = torch.load(weights_file, map_location=device, weights_only=True)
if "vision.blocks.0.attn.proj.bias" in tensors.keys():
missing_keys, unexpected_keys = model.load_state_dict(tensors, strict=False)
print("Missing keys:", missing_keys)
print("Unexpected keys:", unexpected_keys)
else:
tensors = {
k.replace("._orig_mod", ""): v.to(dtype=torch.bfloat16)
for k, v in tensors.items()
}
_load_weights(lambda x: tensors[x], model)
def load_weights_into_model(weights_file: str, model: nn.Module) -> None:
"""
Load weights from either a safetensors or PyTorch file directly into a MoondreamModel instance.
Args:
weights_file: Path to weights file (either .safetensors or .pt)
model: MoondreamModel instance to load weights into
"""
if weights_file.endswith(".safetensors"):
load_weights_from_safetensors(weights_file, model)
else:
load_weights_from_pt(weights_file, model)
# Make all parameters contiguous
for param in model.parameters():
param.data = param.data.contiguous()
|