roberta-base-Disease-NER

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7496
  • Precision: 0.5450
  • Recall: 0.6759
  • F1: 0.6035
  • Accuracy: 0.8198

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 180 0.7775 0.3892 0.5483 0.4552 0.7676
No log 2.0 360 0.5731 0.4717 0.6003 0.5283 0.8152
0.8746 3.0 540 0.5629 0.4745 0.6515 0.5491 0.8164
0.8746 4.0 720 0.5848 0.4603 0.6744 0.5472 0.8106
0.8746 5.0 900 0.5489 0.5212 0.6686 0.5858 0.8239
0.4396 6.0 1080 0.5524 0.5123 0.6804 0.5845 0.8195
0.4396 7.0 1260 0.5550 0.5001 0.6842 0.5778 0.8174
0.4396 8.0 1440 0.5787 0.4982 0.6882 0.5780 0.8128
0.3302 9.0 1620 0.5824 0.5104 0.6939 0.5882 0.8154
0.3302 10.0 1800 0.5872 0.5295 0.6781 0.5947 0.8211
0.3302 11.0 1980 0.6047 0.5261 0.6867 0.5957 0.8210
0.2564 12.0 2160 0.6151 0.5357 0.6739 0.5969 0.8220
0.2564 13.0 2340 0.6560 0.5204 0.6784 0.5890 0.8172
0.204 14.0 2520 0.6866 0.5162 0.6919 0.5913 0.8155
0.204 15.0 2700 0.6994 0.5192 0.6887 0.5921 0.8145
0.204 16.0 2880 0.6904 0.5309 0.6764 0.5949 0.8199
0.1655 17.0 3060 0.7752 0.4925 0.6919 0.5754 0.8059
0.1655 18.0 3240 0.7464 0.5182 0.6832 0.5893 0.8152
0.1655 19.0 3420 0.7739 0.5242 0.6784 0.5914 0.8157
0.1335 20.0 3600 0.7496 0.5450 0.6759 0.6035 0.8198
0.1335 21.0 3780 0.7835 0.5296 0.6759 0.5939 0.8141
0.1335 22.0 3960 0.8174 0.5080 0.6869 0.5841 0.8092
0.1155 23.0 4140 0.8307 0.5336 0.6746 0.5959 0.8153
0.1155 24.0 4320 0.8457 0.5253 0.6832 0.5939 0.8126
0.0959 25.0 4500 0.8473 0.5250 0.6829 0.5936 0.8138
0.0959 26.0 4680 0.8971 0.5131 0.6837 0.5862 0.8069
0.0959 27.0 4860 0.8770 0.5229 0.6849 0.5930 0.8161
0.0814 28.0 5040 0.9317 0.5012 0.6894 0.5804 0.8083
0.0814 29.0 5220 0.9051 0.5288 0.6776 0.5940 0.8141
0.0814 30.0 5400 0.9387 0.5184 0.6839 0.5897 0.8106
0.0706 31.0 5580 0.9402 0.5261 0.6897 0.5969 0.8134
0.0706 32.0 5760 0.9603 0.5121 0.6839 0.5857 0.8104
0.0706 33.0 5940 0.9535 0.5255 0.6769 0.5917 0.8145
0.062 34.0 6120 0.9675 0.5250 0.6844 0.5942 0.8142
0.062 35.0 6300 0.9938 0.5249 0.6754 0.5907 0.8128
0.062 36.0 6480 0.9890 0.5222 0.6796 0.5906 0.8124
0.0544 37.0 6660 1.0106 0.5244 0.6794 0.5919 0.8135
0.0544 38.0 6840 1.0285 0.5230 0.6839 0.5928 0.8109
0.0489 39.0 7020 1.0253 0.5219 0.6809 0.5909 0.8137
0.0489 40.0 7200 1.0263 0.5229 0.6806 0.5914 0.8124
0.0489 41.0 7380 1.0511 0.5205 0.6849 0.5915 0.8113
0.0447 42.0 7560 1.0563 0.5145 0.6804 0.5859 0.8110
0.0447 43.0 7740 1.0521 0.5210 0.6814 0.5905 0.8128
0.0447 44.0 7920 1.0581 0.5220 0.6799 0.5906 0.8115
0.0411 45.0 8100 1.0597 0.5221 0.6816 0.5913 0.8127
0.0411 46.0 8280 1.0770 0.5216 0.6844 0.5920 0.8114
0.0411 47.0 8460 1.0689 0.5275 0.6847 0.5959 0.8128
0.039 48.0 8640 1.0665 0.5284 0.6821 0.5955 0.8135
0.039 49.0 8820 1.0715 0.5271 0.6829 0.5950 0.8128
0.0374 50.0 9000 1.0716 0.5273 0.6827 0.5950 0.8130

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
44
Safetensors
Model size
124M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support