Model save
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
model-index:
|
14 |
+
- name: vit-base-patch16-224-in21k-bridgedefectVIT15
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: imagefolder
|
21 |
+
type: imagefolder
|
22 |
+
config: default
|
23 |
+
split: train
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value:
|
29 |
+
accuracy: 0.9573153608536927
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value:
|
33 |
+
f1: 0.9566147291413047
|
34 |
+
- name: Precision
|
35 |
+
type: precision
|
36 |
+
value:
|
37 |
+
precision: 0.9591127716274309
|
38 |
+
- name: Recall
|
39 |
+
type: recall
|
40 |
+
value:
|
41 |
+
recall: 0.9565472623176632
|
42 |
+
---
|
43 |
+
|
44 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
45 |
+
should probably proofread and complete it, then remove this comment. -->
|
46 |
+
|
47 |
+
# vit-base-patch16-224-in21k-bridgedefectVIT15
|
48 |
+
|
49 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
50 |
+
It achieves the following results on the evaluation set:
|
51 |
+
- Loss: 0.2402
|
52 |
+
- Accuracy: {'accuracy': 0.9573153608536927}
|
53 |
+
- F1: {'f1': 0.9566147291413047}
|
54 |
+
- Precision: {'precision': 0.9591127716274309}
|
55 |
+
- Recall: {'recall': 0.9565472623176632}
|
56 |
+
|
57 |
+
## Model description
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Intended uses & limitations
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training and evaluation data
|
66 |
+
|
67 |
+
More information needed
|
68 |
+
|
69 |
+
## Training procedure
|
70 |
+
|
71 |
+
### Training hyperparameters
|
72 |
+
|
73 |
+
The following hyperparameters were used during training:
|
74 |
+
- learning_rate: 5e-05
|
75 |
+
- train_batch_size: 2
|
76 |
+
- eval_batch_size: 2
|
77 |
+
- seed: 42
|
78 |
+
- gradient_accumulation_steps: 4
|
79 |
+
- total_train_batch_size: 8
|
80 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
81 |
+
- lr_scheduler_type: linear
|
82 |
+
- lr_scheduler_warmup_ratio: 0.1
|
83 |
+
- num_epochs: 15
|
84 |
+
|
85 |
+
### Training results
|
86 |
+
|
87 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
88 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:|:------------------------------:|
|
89 |
+
| 0.3548 | 1.0 | 1780 | 0.2848 | {'accuracy': 0.9118225217635496} | {'f1': 0.912598515170384} | {'precision': 0.913326374297146} | {'recall': 0.9157022464716918} |
|
90 |
+
| 0.1718 | 2.0 | 3560 | 0.3435 | {'accuracy': 0.9005897219882055} | {'f1': 0.9021520907258462} | {'precision': 0.9071588887385811} | {'recall': 0.9088734326741875} |
|
91 |
+
| 0.1956 | 3.0 | 5340 | 0.2290 | {'accuracy': 0.9337264813254704} | {'f1': 0.9345043308561282} | {'precision': 0.9371641968965463} | {'recall': 0.9353444695340449} |
|
92 |
+
| 0.1589 | 4.0 | 7120 | 0.3518 | {'accuracy': 0.925582701488346} | {'f1': 0.9240312800580016} | {'precision': 0.9310407182465765} | {'recall': 0.9241275251443595} |
|
93 |
+
| 0.1076 | 5.0 | 8900 | 0.4017 | {'accuracy': 0.9188430216231396} | {'f1': 0.9170326424426785} | {'precision': 0.923800610078333} | {'recall': 0.9181896594596475} |
|
94 |
+
| 0.0895 | 6.0 | 10680 | 0.2950 | {'accuracy': 0.938219601235608} | {'f1': 0.9380460882172743} | {'precision': 0.9406510771971466} | {'recall': 0.9398150744796098} |
|
95 |
+
| 0.0833 | 7.0 | 12460 | 0.1882 | {'accuracy': 0.9559112608817748} | {'f1': 0.9553785330080078} | {'precision': 0.957564211420095} | {'recall': 0.9550045684543612} |
|
96 |
+
| 0.034 | 8.0 | 14240 | 0.3222 | {'accuracy': 0.9401853411962932} | {'f1': 0.9401162584753809} | {'precision': 0.944463542451817} | {'recall': 0.9410746120960137} |
|
97 |
+
| 0.1117 | 9.0 | 16020 | 0.3084 | {'accuracy': 0.9401853411962932} | {'f1': 0.9389336455514373} | {'precision': 0.945493350000876} | {'recall': 0.9374486305327216} |
|
98 |
+
| 0.2057 | 10.0 | 17800 | 0.3612 | {'accuracy': 0.9348497613030048} | {'f1': 0.9343390020827073} | {'precision': 0.939876035403298} | {'recall': 0.9348316142752356} |
|
99 |
+
| 0.1 | 11.0 | 19580 | 0.2284 | {'accuracy': 0.9553496208930076} | {'f1': 0.9540937018628736} | {'precision': 0.9563364479044711} | {'recall': 0.9537814730817218} |
|
100 |
+
| 0.0531 | 12.0 | 21360 | 0.2393 | {'accuracy': 0.9528222409435552} | {'f1': 0.9517895350619009} | {'precision': 0.955245168398952} | {'recall': 0.9514588091149371} |
|
101 |
+
| 0.0597 | 13.0 | 23140 | 0.2695 | {'accuracy': 0.9519797809604044} | {'f1': 0.9513321647748849} | {'precision': 0.9541412213348108} | {'recall': 0.9515688542696423} |
|
102 |
+
| 0.0482 | 14.0 | 24920 | 0.2403 | {'accuracy': 0.9567537208649256} | {'f1': 0.9560207781245073} | {'precision': 0.9590114685856663} | {'recall': 0.9557731012948057} |
|
103 |
+
| 0.0019 | 15.0 | 26700 | 0.2402 | {'accuracy': 0.9573153608536927} | {'f1': 0.9566147291413047} | {'precision': 0.9591127716274309} | {'recall': 0.9565472623176632} |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.37.2
|
109 |
+
- Pytorch 2.1.0
|
110 |
+
- Datasets 2.17.1
|
111 |
+
- Tokenizers 0.15.2
|