mmomm25 commited on
Commit
4916925
·
verified ·
1 Parent(s): 76ae0ef

Model save

Browse files
Files changed (1) hide show
  1. README.md +111 -0
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: vit-base-patch16-224-in21k-bridgedefectVIT15
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: train
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value:
29
+ accuracy: 0.9573153608536927
30
+ - name: F1
31
+ type: f1
32
+ value:
33
+ f1: 0.9566147291413047
34
+ - name: Precision
35
+ type: precision
36
+ value:
37
+ precision: 0.9591127716274309
38
+ - name: Recall
39
+ type: recall
40
+ value:
41
+ recall: 0.9565472623176632
42
+ ---
43
+
44
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
45
+ should probably proofread and complete it, then remove this comment. -->
46
+
47
+ # vit-base-patch16-224-in21k-bridgedefectVIT15
48
+
49
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
50
+ It achieves the following results on the evaluation set:
51
+ - Loss: 0.2402
52
+ - Accuracy: {'accuracy': 0.9573153608536927}
53
+ - F1: {'f1': 0.9566147291413047}
54
+ - Precision: {'precision': 0.9591127716274309}
55
+ - Recall: {'recall': 0.9565472623176632}
56
+
57
+ ## Model description
58
+
59
+ More information needed
60
+
61
+ ## Intended uses & limitations
62
+
63
+ More information needed
64
+
65
+ ## Training and evaluation data
66
+
67
+ More information needed
68
+
69
+ ## Training procedure
70
+
71
+ ### Training hyperparameters
72
+
73
+ The following hyperparameters were used during training:
74
+ - learning_rate: 5e-05
75
+ - train_batch_size: 2
76
+ - eval_batch_size: 2
77
+ - seed: 42
78
+ - gradient_accumulation_steps: 4
79
+ - total_train_batch_size: 8
80
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
81
+ - lr_scheduler_type: linear
82
+ - lr_scheduler_warmup_ratio: 0.1
83
+ - num_epochs: 15
84
+
85
+ ### Training results
86
+
87
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
88
+ |:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:|:------------------------------:|
89
+ | 0.3548 | 1.0 | 1780 | 0.2848 | {'accuracy': 0.9118225217635496} | {'f1': 0.912598515170384} | {'precision': 0.913326374297146} | {'recall': 0.9157022464716918} |
90
+ | 0.1718 | 2.0 | 3560 | 0.3435 | {'accuracy': 0.9005897219882055} | {'f1': 0.9021520907258462} | {'precision': 0.9071588887385811} | {'recall': 0.9088734326741875} |
91
+ | 0.1956 | 3.0 | 5340 | 0.2290 | {'accuracy': 0.9337264813254704} | {'f1': 0.9345043308561282} | {'precision': 0.9371641968965463} | {'recall': 0.9353444695340449} |
92
+ | 0.1589 | 4.0 | 7120 | 0.3518 | {'accuracy': 0.925582701488346} | {'f1': 0.9240312800580016} | {'precision': 0.9310407182465765} | {'recall': 0.9241275251443595} |
93
+ | 0.1076 | 5.0 | 8900 | 0.4017 | {'accuracy': 0.9188430216231396} | {'f1': 0.9170326424426785} | {'precision': 0.923800610078333} | {'recall': 0.9181896594596475} |
94
+ | 0.0895 | 6.0 | 10680 | 0.2950 | {'accuracy': 0.938219601235608} | {'f1': 0.9380460882172743} | {'precision': 0.9406510771971466} | {'recall': 0.9398150744796098} |
95
+ | 0.0833 | 7.0 | 12460 | 0.1882 | {'accuracy': 0.9559112608817748} | {'f1': 0.9553785330080078} | {'precision': 0.957564211420095} | {'recall': 0.9550045684543612} |
96
+ | 0.034 | 8.0 | 14240 | 0.3222 | {'accuracy': 0.9401853411962932} | {'f1': 0.9401162584753809} | {'precision': 0.944463542451817} | {'recall': 0.9410746120960137} |
97
+ | 0.1117 | 9.0 | 16020 | 0.3084 | {'accuracy': 0.9401853411962932} | {'f1': 0.9389336455514373} | {'precision': 0.945493350000876} | {'recall': 0.9374486305327216} |
98
+ | 0.2057 | 10.0 | 17800 | 0.3612 | {'accuracy': 0.9348497613030048} | {'f1': 0.9343390020827073} | {'precision': 0.939876035403298} | {'recall': 0.9348316142752356} |
99
+ | 0.1 | 11.0 | 19580 | 0.2284 | {'accuracy': 0.9553496208930076} | {'f1': 0.9540937018628736} | {'precision': 0.9563364479044711} | {'recall': 0.9537814730817218} |
100
+ | 0.0531 | 12.0 | 21360 | 0.2393 | {'accuracy': 0.9528222409435552} | {'f1': 0.9517895350619009} | {'precision': 0.955245168398952} | {'recall': 0.9514588091149371} |
101
+ | 0.0597 | 13.0 | 23140 | 0.2695 | {'accuracy': 0.9519797809604044} | {'f1': 0.9513321647748849} | {'precision': 0.9541412213348108} | {'recall': 0.9515688542696423} |
102
+ | 0.0482 | 14.0 | 24920 | 0.2403 | {'accuracy': 0.9567537208649256} | {'f1': 0.9560207781245073} | {'precision': 0.9590114685856663} | {'recall': 0.9557731012948057} |
103
+ | 0.0019 | 15.0 | 26700 | 0.2402 | {'accuracy': 0.9573153608536927} | {'f1': 0.9566147291413047} | {'precision': 0.9591127716274309} | {'recall': 0.9565472623176632} |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.37.2
109
+ - Pytorch 2.1.0
110
+ - Datasets 2.17.1
111
+ - Tokenizers 0.15.2