vit-base-patch16-224-in21k-bridgedefectVIT15

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2402
  • Accuracy: {'accuracy': 0.9573153608536927}
  • F1: {'f1': 0.9566147291413047}
  • Precision: {'precision': 0.9591127716274309}
  • Recall: {'recall': 0.9565472623176632}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3548 1.0 1780 0.2848 {'accuracy': 0.9118225217635496} {'f1': 0.912598515170384} {'precision': 0.913326374297146} {'recall': 0.9157022464716918}
0.1718 2.0 3560 0.3435 {'accuracy': 0.9005897219882055} {'f1': 0.9021520907258462} {'precision': 0.9071588887385811} {'recall': 0.9088734326741875}
0.1956 3.0 5340 0.2290 {'accuracy': 0.9337264813254704} {'f1': 0.9345043308561282} {'precision': 0.9371641968965463} {'recall': 0.9353444695340449}
0.1589 4.0 7120 0.3518 {'accuracy': 0.925582701488346} {'f1': 0.9240312800580016} {'precision': 0.9310407182465765} {'recall': 0.9241275251443595}
0.1076 5.0 8900 0.4017 {'accuracy': 0.9188430216231396} {'f1': 0.9170326424426785} {'precision': 0.923800610078333} {'recall': 0.9181896594596475}
0.0895 6.0 10680 0.2950 {'accuracy': 0.938219601235608} {'f1': 0.9380460882172743} {'precision': 0.9406510771971466} {'recall': 0.9398150744796098}
0.0833 7.0 12460 0.1882 {'accuracy': 0.9559112608817748} {'f1': 0.9553785330080078} {'precision': 0.957564211420095} {'recall': 0.9550045684543612}
0.034 8.0 14240 0.3222 {'accuracy': 0.9401853411962932} {'f1': 0.9401162584753809} {'precision': 0.944463542451817} {'recall': 0.9410746120960137}
0.1117 9.0 16020 0.3084 {'accuracy': 0.9401853411962932} {'f1': 0.9389336455514373} {'precision': 0.945493350000876} {'recall': 0.9374486305327216}
0.2057 10.0 17800 0.3612 {'accuracy': 0.9348497613030048} {'f1': 0.9343390020827073} {'precision': 0.939876035403298} {'recall': 0.9348316142752356}
0.1 11.0 19580 0.2284 {'accuracy': 0.9553496208930076} {'f1': 0.9540937018628736} {'precision': 0.9563364479044711} {'recall': 0.9537814730817218}
0.0531 12.0 21360 0.2393 {'accuracy': 0.9528222409435552} {'f1': 0.9517895350619009} {'precision': 0.955245168398952} {'recall': 0.9514588091149371}
0.0597 13.0 23140 0.2695 {'accuracy': 0.9519797809604044} {'f1': 0.9513321647748849} {'precision': 0.9541412213348108} {'recall': 0.9515688542696423}
0.0482 14.0 24920 0.2403 {'accuracy': 0.9567537208649256} {'f1': 0.9560207781245073} {'precision': 0.9590114685856663} {'recall': 0.9557731012948057}
0.0019 15.0 26700 0.2402 {'accuracy': 0.9573153608536927} {'f1': 0.9566147291413047} {'precision': 0.9591127716274309} {'recall': 0.9565472623176632}

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for mmomm25/vit-base-patch16-224-in21k-bridgedefectVIT15

Finetuned
(1962)
this model

Evaluation results