metadata
base_model: princeton-nlp/gemma-2-9b-it-SimPO
tags:
- alignment-handbook
- generated_from_trainer
- mlx
datasets:
- princeton-nlp/gemma2-ultrafeedback-armorm
license: mit
pipeline_tag: text-generation
library_name: mlx
model-index:
- name: princeton-nlp/gemma-2-9b-it-SimPO
results: []
mlx-community/gemma-2-9b-it-SimPO-8bit
This model mlx-community/gemma-2-9b-it-SimPO-8bit was converted to MLX format from princeton-nlp/gemma-2-9b-it-SimPO using mlx-lm version 0.26.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/gemma-2-9b-it-SimPO-8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)