metadata
base_model: Tesslate/Tessa-T1-32B
tags:
- text-generation-inference
- transformers
- qwen2
- trl
- mlx
license: apache-2.0
language:
- en
datasets:
- Tesslate/Tessa-T1-Dataset
pipeline_tag: text-generation
library_name: mlx
mlx-community/Tessa-T1-32B-mlx-4bit
This model mlx-community/Tessa-T1-32B-mlx-4bit was converted to MLX format from Tesslate/Tessa-T1-32B using mlx-lm version 0.22.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Tessa-T1-32B-mlx-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)