metadata
license: apache-2.0
datasets:
- lars1234/story_writing_benchmark
base_model: lars1234/Mistral-Small-24B-Instruct-2501-writer
library_name: mlx
tags:
- mlx
pipeline_tag: text-generation
mlx-community/Mistral-Small-24B-Instruct-2501-writer
This model mlx-community/Mistral-Small-24B-Instruct-2501-writer was converted to MLX format from lars1234/Mistral-Small-24B-Instruct-2501-writer using mlx-lm version 0.25.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Mistral-Small-24B-Instruct-2501-writer")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)