metadata
license: mit
library_name: mlx
tags:
- mlx
base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
pipeline_tag: text-generation
mlx-community/DeepSeek-R1-0528-Qwen3-8B-4bit-AWQ
This model mlx-community/DeepSeek-R1-0528-Qwen3-8B-4bit-AWQ was converted to MLX format from deepseek-ai/DeepSeek-R1-0528-Qwen3-8B using mlx-lm version 0.25.2.
AWQ Parameters: --bits 4 --group-size 64 --embed-bits 4 --embed-group-size 32 --num-samples 256 --sequence-length 1024 --n-grid 50
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/DeepSeek-R1-0528-Qwen3-8B-4bit-AWQ")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)