SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 312 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("mlsa-iai-msu-lab/sci-rus-tiny3.1")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.35.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.26.1
  • Datasets: 2.20.0
  • Tokenizers: 0.15.0

Citation

@article{Gerasimenko2024,
  author  = {Gerasimenko, N. and Vatolin, A. and Ianina, A. and Vorontsov, K.},
  title   = {SciRus: Tiny and Powerful Multilingual Encoder for Scientific Texts},
  journal = {Doklady Mathematics},
  year    = {2024},
  volume  = {110},
  number  = {1},
  pages   = {S193--S202},
  month   = {dec},
  issn    = {1531-8362},
  doi     = {10.1134/S1064562424602178},
  url     = {https://doi.org/10.1134/S1064562424602178}
}
Downloads last month
468
Safetensors
Model size
23M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support