Edit model card

wav2vec2-xlrs-finetuning

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the arrow dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6930
  • Accuracy: 0.2803
  • F1 Score: 0.1655
  • Mse: 1.9782
  • Mae: 1.0558
  • Mae^m: 1.5570

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 9
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 18
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Mse Mae Mae^m
1.7525 0.6116 100 1.7058 0.3497 0.0648 3.0952 1.2231 2.75
1.6944 1.2232 200 1.6854 0.3497 0.0648 3.0952 1.2231 2.75
1.7037 1.8349 300 1.7210 0.2367 0.0479 2.0190 1.1075 2.25
1.7667 2.4465 400 1.6868 0.3646 0.0927 2.6707 1.1224 2.5934
1.6859 3.0581 500 1.6833 0.3497 0.0648 3.0952 1.2231 2.75
1.6991 3.6697 600 1.6827 0.3497 0.0648 3.0952 1.2231 2.75
1.6404 4.2813 700 1.7078 0.3497 0.0648 3.0952 1.2231 2.75
1.7088 4.8930 800 1.6962 0.3497 0.0648 3.0952 1.2231 2.75
1.751 5.5046 900 1.6863 0.3497 0.0648 3.0952 1.2231 2.75
1.7813 6.1162 1000 1.6966 0.3497 0.0648 3.0952 1.2231 2.75
1.712 6.7278 1100 1.6783 0.3497 0.0648 3.0952 1.2231 2.75
1.6503 7.3394 1200 1.6816 0.3497 0.0648 3.0952 1.2231 2.75
1.5967 7.9511 1300 1.6588 0.3497 0.0648 3.0952 1.2231 2.75
1.6538 8.5627 1400 1.6229 0.3497 0.0648 3.0952 1.2231 2.75
1.654 9.1743 1500 1.6118 0.3633 0.0919 2.5347 1.1061 2.2236
1.5913 9.7859 1600 1.5914 0.3660 0.1215 2.1537 1.0218 2.1284
1.5896 10.3976 1700 1.6029 0.3578 0.1333 1.9102 0.9796 1.9420
1.5274 11.0092 1800 1.6201 0.3769 0.1124 2.3429 1.0558 2.1678
1.4581 11.6208 1900 1.5739 0.3687 0.1036 2.3918 1.0748 2.2286
1.4 12.2324 2000 1.6100 0.3442 0.1365 2.0395 1.0190 1.6647
1.5475 12.8440 2100 1.5741 0.3524 0.1431 1.6735 0.9388 1.7980
1.4724 13.4557 2200 1.5782 0.3660 0.1596 1.7537 0.9347 1.6576
1.3411 14.0673 2300 1.5875 0.3810 0.1273 2.0503 0.9891 1.8447
1.4884 14.6789 2400 1.5822 0.3537 0.1388 1.9293 0.9878 1.6427
1.4326 15.2905 2500 1.5996 0.3456 0.1613 1.7320 0.9565 1.5640
1.3412 15.9021 2600 1.6870 0.2952 0.1280 2.0231 1.0653 1.5219
1.3139 16.5138 2700 1.6911 0.3361 0.1439 1.7605 0.9660 1.6466
1.1558 17.1254 2800 1.6576 0.3469 0.1504 1.8340 0.9714 1.6081
1.3099 17.7370 2900 1.6184 0.3156 0.1694 1.7075 0.9701 1.5880
1.3763 18.3486 3000 1.7211 0.3333 0.1505 1.7578 0.9633 1.6180
1.1732 18.9602 3100 1.7625 0.3401 0.1580 1.8082 0.9728 1.6791
1.1137 19.5719 3200 1.8241 0.3252 0.1757 1.7946 0.9864 1.6387
1.128 20.1835 3300 1.8824 0.3156 0.1727 1.7823 0.9932 1.6233
1.0219 20.7951 3400 1.9237 0.3456 0.1630 1.7891 0.9619 1.5458
1.0466 21.4067 3500 1.9450 0.3238 0.1610 1.6993 0.9619 1.6316
1.1768 22.0183 3600 2.0642 0.3034 0.1720 1.9946 1.0503 1.4796
1.1656 22.6300 3700 2.2870 0.2680 0.1696 2.1741 1.1156 1.4731
0.8624 23.2416 3800 2.2612 0.3102 0.1749 1.8435 1.0 1.6763
1.0267 23.8532 3900 2.2753 0.2939 0.1647 2.0150 1.0599 1.5093
0.8059 24.4648 4000 2.2790 0.3197 0.1704 1.7714 0.9796 1.5151
0.8924 25.0765 4100 2.3183 0.2898 0.1755 1.9048 1.0313 1.5539
0.9581 25.6881 4200 2.3930 0.2803 0.1722 2.0082 1.0667 1.5516
0.7513 26.2997 4300 2.5025 0.2789 0.1631 2.0367 1.0735 1.5718
0.8617 26.9113 4400 2.5418 0.2966 0.1686 1.9959 1.0463 1.5909
0.7768 27.5229 4500 2.6084 0.2898 0.1718 1.9551 1.0463 1.5532
0.7316 28.1346 4600 2.6581 0.2844 0.1687 1.8803 1.0286 1.5414
0.7436 28.7462 4700 2.6899 0.2667 0.1611 2.0503 1.0871 1.5357
0.8487 29.3578 4800 2.6930 0.2803 0.1655 1.9782 1.0558 1.5570

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mlmarian/wav2vec2-xlrs-finetuning

Finetuned
(428)
this model

Evaluation results