mdeberta-v3-base-finetuned-climate-stance-opposed-classification
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5341
- Accuracy: 0.8873
- F1 Macro: 0.8678
- Accuracy Balanced: 0.8625
- F1 Micro: 0.8873
- Precision Macro: 0.8738
- Recall Macro: 0.8625
- Precision Micro: 0.8873
- Recall Micro: 0.8873
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4971 | 0.9960 | 500 | 0.3347 | 0.8674 | 0.8462 | 0.8454 | 0.8674 | 0.8471 | 0.8454 | 0.8674 | 0.8674 |
0.3153 | 1.9920 | 1000 | 0.4414 | 0.8833 | 0.8659 | 0.8681 | 0.8833 | 0.8638 | 0.8681 | 0.8833 | 0.8833 |
0.2104 | 2.9880 | 1500 | 0.5379 | 0.8843 | 0.8641 | 0.8586 | 0.8843 | 0.8705 | 0.8586 | 0.8843 | 0.8843 |
0.1374 | 3.9841 | 2000 | 0.5341 | 0.8873 | 0.8678 | 0.8625 | 0.8873 | 0.8738 | 0.8625 | 0.8873 | 0.8873 |
Framework versions
- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mljn/mdeberta-v3-base-finetuned-climate-stance-opposed-classification
Base model
microsoft/mdeberta-v3-base