mdeberta-v3-base-finetuned-climate-stance-opposed-classification
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4849
- Accuracy: 0.9
- F1 Macro: 0.8886
- Accuracy Balanced: 0.8844
- F1 Micro: 0.9
- Precision Macro: 0.8935
- Recall Macro: 0.8844
- Precision Micro: 0.9
- Recall Micro: 0.9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4757 | 1.0989 | 500 | 0.4542 | 0.8879 | 0.8714 | 0.8582 | 0.8879 | 0.8922 | 0.8582 | 0.8879 | 0.8879 |
0.3028 | 2.1978 | 1000 | 0.4656 | 0.8890 | 0.8745 | 0.8657 | 0.8890 | 0.8866 | 0.8657 | 0.8890 | 0.8890 |
0.2044 | 3.2967 | 1500 | 0.4849 | 0.9 | 0.8886 | 0.8844 | 0.9 | 0.8935 | 0.8844 | 0.9 | 0.9 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 22
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mljn/mdeberta-v3-base-finetuned-climate-stance-opposed-classification
Base model
microsoft/mdeberta-v3-base