BigQwen2.5-52B-Instruct
BigQwen2.5-52B-Instruct is a Qwen/Qwen2-32B-Instruct self-merge made with MergeKit.
It applies the mlabonne/Meta-Llama-3-120B-Instruct recipe.
I made it due to popular demand but I haven't tested it so use it at your own risk. Β―\_(γ)_/Β―
π Applications
It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory.
π Evaluation
Metric | BigQwen2.5-Echo-47B-Instruct | BigQwen2.5-52B-Instruct | Qwen2.5-32B-Instruct |
---|---|---|---|
Avg. | 30.31 | 37.42 | 36.17 |
IFEval (0-Shot) | 73.57 | 79.29 | 83.46 |
BBH (3-Shot) | 44.52 | 59.81 | 56.49 |
MATH Lvl 5 (4-Shot) | 3.47 | 17.82 | 0 |
GPQA (0-shot) | 8.61 | 6.94 | 11.74 |
MuSR (0-shot) | 10.19 | 10.45 | 13.5 |
MMLU-PRO (5-shot) | 41.49 | 50.22 | 51.85 |
𧩠Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- layer_range: [0, 16]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [8, 24]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [16, 32]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [24, 40]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [32, 48]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [40, 56]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [56, 64]
model: Qwen/Qwen2.5-32B-Instruct
merge_method: passthrough
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/BigQwen2.5-52B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 23
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for mlabonne/BigQwen2.5-52B-Instruct
Base model
Qwen/Qwen2.5-32B
Finetuned
Qwen/Qwen2.5-32B-Instruct
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard79.290
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard59.810
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard17.820
- acc_norm on GPQA (0-shot)Open LLM Leaderboard6.940
- acc_norm on MuSR (0-shot)Open LLM Leaderboard10.450
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard50.220