Files changed (1) hide show
  1. README.md +106 -94
README.md CHANGED
@@ -1,95 +1,107 @@
1
- ---
2
- license: other
3
- license_name: tongyi-qianwen
4
- license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
5
- language:
6
- - en
7
- pipeline_tag: text-generation
8
- library_name: transformers
9
- tags:
10
- - mergekit
11
- - merge
12
- - lazymergekit
13
- base_model:
14
- - Qwen/Qwen2.5-72B-Instruct
15
- ---
16
- # BigQwen2.5-125B-Instruct
17
-
18
- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/98GiKtmH1AtHHbIbOUH4Y.jpeg)
19
-
20
- BigQwen2.5-125B-Instruct is a [Qwen/Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main).
21
-
22
- It applies the [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct/) recipe.
23
-
24
- I made it due to popular demand but I haven't tested it so use it at your own risk. ¯\\\_(ツ)_/¯
25
-
26
- ## 🔍 Applications
27
-
28
- It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory.
29
-
30
- ## 🏆 Evaluation
31
-
32
- I think it's too big for the Open LLM Leaderboard, unfortunately. Here's some feedback from users (thanks a lot!):
33
-
34
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/OhnwtXgIMIcr2pQqggXhU.png)
35
-
36
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/8v_Eb6ZvpVYMhu8kMwklq.png)
37
-
38
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/Px4f-BTJ8nDihzPJ0F47K.png)
39
-
40
- ## 🧩 Configuration
41
-
42
- The following YAML configuration was used to produce this model:
43
-
44
- ```yaml
45
- slices:
46
- - sources:
47
- - layer_range: [0, 20]
48
- model: Qwen/Qwen2.5-72B-Instruct
49
- - sources:
50
- - layer_range: [10, 30]
51
- model: Qwen/Qwen2.5-72B-Instruct
52
- - sources:
53
- - layer_range: [20, 40]
54
- model: Qwen/Qwen2.5-72B-Instruct
55
- - sources:
56
- - layer_range: [30, 50]
57
- model: Qwen/Qwen2.5-72B-Instruct
58
- - sources:
59
- - layer_range: [40, 60]
60
- model: Qwen/Qwen2.5-72B-Instruct
61
- - sources:
62
- - layer_range: [50, 70]
63
- model: Qwen/Qwen2.5-72B-Instruct
64
- - sources:
65
- - layer_range: [60, 80]
66
- model: Qwen/Qwen2.5-72B-Instruct
67
- merge_method: passthrough
68
- dtype: bfloat16
69
-
70
- ```
71
-
72
- ## 💻 Usage
73
-
74
- ```python
75
- !pip install -qU transformers accelerate
76
-
77
- from transformers import AutoTokenizer
78
- import transformers
79
- import torch
80
-
81
- model = "mlabonne/BigQwen2.5-125B-Instruct"
82
- messages = [{"role": "user", "content": "What is a large language model?"}]
83
-
84
- tokenizer = AutoTokenizer.from_pretrained(model)
85
- prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
86
- pipeline = transformers.pipeline(
87
- "text-generation",
88
- model=model,
89
- torch_dtype=torch.float16,
90
- device_map="auto",
91
- )
92
-
93
- outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
94
- print(outputs[0]["generated_text"])
 
 
 
 
 
 
 
 
 
 
 
 
95
  ```
 
1
+ ---
2
+ license: other
3
+ license_name: tongyi-qianwen
4
+ license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
5
+ language:
6
+ - zho
7
+ - eng
8
+ - fra
9
+ - spa
10
+ - por
11
+ - deu
12
+ - ita
13
+ - rus
14
+ - jpn
15
+ - kor
16
+ - vie
17
+ - tha
18
+ - ara
19
+ pipeline_tag: text-generation
20
+ library_name: transformers
21
+ tags:
22
+ - mergekit
23
+ - merge
24
+ - lazymergekit
25
+ base_model:
26
+ - Qwen/Qwen2.5-72B-Instruct
27
+ ---
28
+ # BigQwen2.5-125B-Instruct
29
+
30
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/98GiKtmH1AtHHbIbOUH4Y.jpeg)
31
+
32
+ BigQwen2.5-125B-Instruct is a [Qwen/Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main).
33
+
34
+ It applies the [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct/) recipe.
35
+
36
+ I made it due to popular demand but I haven't tested it so use it at your own risk. ¯\\\_()_/¯
37
+
38
+ ## 🔍 Applications
39
+
40
+ It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory.
41
+
42
+ ## 🏆 Evaluation
43
+
44
+ I think it's too big for the Open LLM Leaderboard, unfortunately. Here's some feedback from users (thanks a lot!):
45
+
46
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/OhnwtXgIMIcr2pQqggXhU.png)
47
+
48
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/8v_Eb6ZvpVYMhu8kMwklq.png)
49
+
50
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/Px4f-BTJ8nDihzPJ0F47K.png)
51
+
52
+ ## 🧩 Configuration
53
+
54
+ The following YAML configuration was used to produce this model:
55
+
56
+ ```yaml
57
+ slices:
58
+ - sources:
59
+ - layer_range: [0, 20]
60
+ model: Qwen/Qwen2.5-72B-Instruct
61
+ - sources:
62
+ - layer_range: [10, 30]
63
+ model: Qwen/Qwen2.5-72B-Instruct
64
+ - sources:
65
+ - layer_range: [20, 40]
66
+ model: Qwen/Qwen2.5-72B-Instruct
67
+ - sources:
68
+ - layer_range: [30, 50]
69
+ model: Qwen/Qwen2.5-72B-Instruct
70
+ - sources:
71
+ - layer_range: [40, 60]
72
+ model: Qwen/Qwen2.5-72B-Instruct
73
+ - sources:
74
+ - layer_range: [50, 70]
75
+ model: Qwen/Qwen2.5-72B-Instruct
76
+ - sources:
77
+ - layer_range: [60, 80]
78
+ model: Qwen/Qwen2.5-72B-Instruct
79
+ merge_method: passthrough
80
+ dtype: bfloat16
81
+
82
+ ```
83
+
84
+ ## 💻 Usage
85
+
86
+ ```python
87
+ !pip install -qU transformers accelerate
88
+
89
+ from transformers import AutoTokenizer
90
+ import transformers
91
+ import torch
92
+
93
+ model = "mlabonne/BigQwen2.5-125B-Instruct"
94
+ messages = [{"role": "user", "content": "What is a large language model?"}]
95
+
96
+ tokenizer = AutoTokenizer.from_pretrained(model)
97
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
98
+ pipeline = transformers.pipeline(
99
+ "text-generation",
100
+ model=model,
101
+ torch_dtype=torch.float16,
102
+ device_map="auto",
103
+ )
104
+
105
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
106
+ print(outputs[0]["generated_text"])
107
  ```