See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-70B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: /workspace/data/dataset/hex_phi_dolphin_responses.jsonl
ds_type: json
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: /workspace/data/out/qlora
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
workspace/data/out/qlora
This model is a fine-tuned version of meta-llama/Meta-Llama-3-70B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0567
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8335 | 0.1 | 1 | 2.0723 |
1.7855 | 0.3 | 3 | 2.0737 |
1.8449 | 0.6 | 6 | 2.0734 |
1.99 | 0.9 | 9 | 2.0728 |
1.7771 | 1.2 | 12 | 2.0731 |
1.8706 | 1.5 | 15 | 2.0735 |
1.8152 | 1.8 | 18 | 2.0728 |
1.7398 | 2.1 | 21 | 2.0716 |
1.7819 | 2.4 | 24 | 2.0715 |
1.7759 | 2.7 | 27 | 2.0706 |
1.8823 | 3.0 | 30 | 2.0684 |
1.7957 | 3.3 | 33 | 2.0649 |
1.8849 | 3.6 | 36 | 2.0624 |
1.8567 | 3.9 | 39 | 2.0567 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for mjobe105/qlora-largersequence-dolphindata
Base model
meta-llama/Meta-Llama-3-70B
Finetuned
meta-llama/Meta-Llama-3-70B-Instruct