This model is a fune-tuned version of codet5-large on Typescript instruct-code pairs.

To run this model, you can use following example:

import torch 
device = torch.device('cuda:0') if torch.cuda.is_available() else None
from transformers import AutoTokenizer, T5ForConditionalGeneration

def generate_code(task_description):
    # Prepare the task description
    input_ids = tokenizer.encode(task_description, return_tensors='pt').to(device)

    # Generate the output
    with torch.no_grad():
        output_ids = model.generate(input_ids, max_length=200, temperature=0.7, num_beams=5)

    # Decode the output
    output = tokenizer.decode(output_ids[0], skip_special_tokens=True)

    return output

model = T5ForConditionalGeneration.from_pretrained('mishasadhaker/codet5_large_typescript').to(device)
tokenizer = AutoTokenizer.from_pretrained('mishasadhaker/codet5_large_typescript')

print(generate_code('write function for sum of two numbers and return it'))
Downloads last month
111
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train mishasadhaker/codet5_large_typescript