miosipof/whisper-small-ft-balbus-sep28k-v1.8
This model is a fine-tuned version of openai/whisper-small on the Apple dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.7899
- Accuracy: 0.6332
- Precision: 0.6373
- Recall: 0.6308
- F1: 0.6332
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.8706 | 1.0 | 436 | 0.8542 | 0.5970 | 0.6032 | 0.6055 | 0.5981 |
0.9399 | 2.0 | 872 | 0.9025 | 0.5747 | 0.5813 | 0.5767 | 0.5762 |
0.8038 | 3.0 | 1308 | 0.7899 | 0.6332 | 0.6373 | 0.6308 | 0.6332 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for miosipof/whisper-small-ft-balbus-sep28k-v1.8
Base model
openai/whisper-smallEvaluation results
- Accuracy on Apple datasetself-reported0.633
- Precision on Apple datasetself-reported0.637
- Recall on Apple datasetself-reported0.631
- F1 on Apple datasetself-reported0.633