Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: Qwen/Qwen2.5-1.5B-Instruct
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: false
load_in_4bit: false
strict: false

# datasets:
#   - path: oneline-tool.jsonl
#     type: chat_template
#     chat_template: chatml
#     field_messages: conversations
#     message_field_role: from
#     message_field_content: value
  # - path: minpeter/stanford-alpaca-regen-llama-3.3
  #   type:
  #     format: "<|im_start|>user\n{instruction}\n{input}<|im_end|>\n<|im_start|>assistant\n"
  #     no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
  #   shards: 52000
datasets:
  - path: minpeter/bfcl-v1-non-live-ast-hermes
    data_files:
      - result.parquet
    type: chat_template
    chat_template: chatml
    field_messages: conversations
    message_field_role: from
    message_field_content: value

chat_template: chatml


dataset_prepared_path: last_run_prepared

output_dir: ./output

adapter: lora
lora_model_dir:

sequence_len: 2048
pad_to_sequence_len: true
sample_packing: true

# val_set_size: 0.1
# eval_sample_packing: true

lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:

# special_tokens:
#   bos_token: null
#   eos_token: <|im_end|>
#   pad_token: <|endoftext|>

output

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the minpeter/bfcl-v1-non-live-ast-hermes dataset.

Model description

Intentionally contaminated BFCL model, 😈

πŸ” Running test: parallel_multiple
βœ… Test completed: parallel_multiple. 🎯 Accuracy: 0.84
πŸ” Running test: parallel
βœ… Test completed: parallel. 🎯 Accuracy: 0.875
πŸ” Running test: simple
βœ… Test completed: simple. 🎯 Accuracy: 0.94
πŸ” Running test: multiple
βœ… Test completed: multiple. 🎯 Accuracy: 0.89

Inference

docker run --rm --runtime nvidia --gpus '"device=0"' \
    -p 8000:8000 \
    -e HF_TOKEN="<secret>" \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    vllm/vllm-openai:latest \
    --model Qwen/Qwen2.5-1.5B-Instruct \
    --enable-lora \
    --lora-modules \
        tool=minpeter/LoRA-corrupted-bfcl-1.5B-v1 \
    --enable-auto-tool-choice \
    --tool-call-parser hermes

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
40
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for minpeter/LoRA-corrupted-bfcl-1.5B-v1

Base model

Qwen/Qwen2.5-1.5B
Adapter
(421)
this model

Dataset used to train minpeter/LoRA-corrupted-bfcl-1.5B-v1