How to Use
diffusers
import torch
from diffusers import LongCatImageEditPipeline, LongCatImageTransformer2DModel
from transformers.modeling_utils import no_init_weights
with no_init_weights():
transformer = LongCatImageTransformer2DModel.from_config(
LongCatImageTransformer2DModel.load_config(
"meituan-longcat/LongCat-Image-Edit", subfolder="transformer"
),
torch_dtype=torch.bfloat16
).to(torch.bfloat16)
DFloat11Model.from_pretrained(
"mingyi456/LongCat-Image-Edit-DF11",
device="cpu",
bfloat16_model=transformer,
)
pipe = LongCatImageEditPipeline.from_pretrained(
"meituan-longcat/LongCat-Image-Edit",
transformer=transformer,
torch_dtype=torch.bfloat16
)
DFloat11Model.from_pretrained(
"mingyi456/Qwen2.5-VL-7B-Instruct-DF11",
device="cpu",
bfloat16_model=pipe.text_encoder,
)
pipe.enable_model_cpu_offload()
img = Image.open('assets/test.png').convert('RGB')
prompt = 'ๅฐ็ซๅๆ็'
image = pipe(
img,
prompt,
negative_prompt='',
guidance_scale=4.5,
num_inference_steps=50,
num_images_per_prompt=1,
generator=torch.Generator("cpu").manual_seed(43)
).images[0]
image.save('image longcat-image-edit.png')
ComfyUI
Currently, this model is not supported natively in ComfyUI. Do let me know if it receives native support, and I will get to supporting it.
Compression details
This is the pattern_dict for compression:
pattern_dict = {
r"transformer_blocks\.\d+": (
"norm1.linear",
"norm1_context.linear",
"attn.to_q",
"attn.to_k",
"attn.to_v",
"attn.to_out.0",
"attn.add_q_proj",
"attn.add_k_proj",
"attn.add_v_proj",
"attn.to_add_out",
"ff.net.0.proj",
"ff.net.2",
"ff_context.net.0.proj",
"ff_context.net.2",
),
r"single_transformer_blocks\.\d+": (
"norm.linear",
"proj_mlp",
"proj_out",
"attn.to_q",
"attn.to_k",
"attn.to_v",
),
}
- Downloads last month
- 6
Model tree for mingyi456/LongCat-Image-Edit-DF11
Base model
meituan-longcat/LongCat-Image-Edit