Model Card for Model ID
This is a fine-tuned version of google-t5/t5-small
, trained on the Tatoeba dataset for French-to-English translation.
Model Details
- Base Model:
google-t5/t5-small
- Dataset Used:
opus_tatoeba (French-English)
- Fine-tuning Epochs: 3
- Optimizer: AdamW (learning rate: 5e-5)
- Evaluation Metric: BLEU Score
- Fine-Tuned BLEU Score: 47.00 (on Tatoeba test set, 10% random subset of tatoeba)
Model Description
- Developed by: Mahdi Ihdeme
- Model type: Language model
Usage
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_name = "mihdeme/t5-fr-en-tatoeba"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def translate(sentence, max_length=460, num_beams=5):
inputs = tokenizer(f"translate French to English: {sentence}", return_tensors="pt", padding=True, truncation=True)
outputs = model.generate(
**inputs,
max_length=max_length,
num_beams=num_beams,
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
print(translate("Bonjour, comment ça va ?"))
Training Configuration
- Batch Size: 16
- Max Sequence Length: 460
- Hardware Used: Google Colab GPU (Tesla T4)
License
Apache 2.0
Acknowledgments
Trained using Hugging Face Transformers. Original dataset from Tatoeba.
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for mihdeme/t5-fr-en-tatoeba
Base model
Helsinki-NLP/opus-mt-fr-en