Model Card for Model ID

This is a fine-tuned version of google-t5/t5-small, trained on the Tatoeba dataset for French-to-English translation.

Model Details

  • Base Model: google-t5/t5-small
  • Dataset Used: opus_tatoeba (French-English)
  • Fine-tuning Epochs: 3
  • Optimizer: AdamW (learning rate: 5e-5)
  • Evaluation Metric: BLEU Score
  • Fine-Tuned BLEU Score: 47.00 (on Tatoeba test set, 10% random subset of tatoeba)

Model Description

  • Developed by: Mahdi Ihdeme
  • Model type: Language model

Usage

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

model_name = "mihdeme/t5-fr-en-tatoeba"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

def translate(sentence, max_length=460, num_beams=5):
    inputs = tokenizer(f"translate French to English: {sentence}", return_tensors="pt", padding=True, truncation=True)
    outputs = model.generate(
        **inputs,
        max_length=max_length,  
        num_beams=num_beams,
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

print(translate("Bonjour, comment ça va ?"))

Training Configuration

  • Batch Size: 16
  • Max Sequence Length: 460
  • Hardware Used: Google Colab GPU (Tesla T4)

License

Apache 2.0

Acknowledgments

Trained using Hugging Face Transformers. Original dataset from Tatoeba.

Downloads last month
4
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mihdeme/t5-fr-en-tatoeba

Finetuned
(9)
this model

Dataset used to train mihdeme/t5-fr-en-tatoeba