Table Transformer
Collection
The Table Transformer (TATR) is a series of object detection models useful for table extraction from PDF images.
β’
5 items
β’
Updated
β’
19
Table Transformer (DETR) model trained on PubTables1M. It was introduced in the paper PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents by Smock et al. and first released in this repository.
Disclaimer: The team releasing Table Transformer did not write a model card for this model so this model card has been written by the Hugging Face team.
The Table Transformer is equivalent to DETR, a Transformer-based object detection model. Note that the authors decided to use the "normalize before" setting of DETR, which means that layernorm is applied before self- and cross-attention.
You can use the raw model for detecting tables in documents. See the documentation for more info.