Regarding Confidence Score
#36
by
Haneesh-007
- opened
How do I get confidence score for bounding boxes while inferencing Object Detection task in FLorence-2?
I would like to know how the scores are calculated when setting "output_scores=True", please provide a reference for the score's meaning.
def run_example_with_score(task_prompt, text_input=None):
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
return_dict_in_generate=True,
output_scores=True,
)
generated_text = processor.batch_decode(generated_ids.sequences, skip_special_tokens=False)[0]
prediction, scores, beam_indices = generated_ids.sequences, generated_ids.scores, generated_ids.beam_indices
transition_beam_scores = model.compute_transition_scores(
sequences=prediction,
scores=scores,
beam_indices=beam_indices,
)
parsed_answer = processor.post_process_generation(sequence=generated_ids.sequences[0],
transition_beam_score=transition_beam_scores[0],
task=task_prompt, image_size=(image.width, image.height)
)
print(parsed_answer)
here is the resource: https://huggingface.co/microsoft/Florence-2-large/discussions/56/files