YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
vllm (pretrained=/home/mgoin/code/llm-compressor/examples/quantizing_moe/Mixtral-8x7B-Instruct-v0.1-FP8,tensor_parallel_size=2), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: auto
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.6338|± |0.0133|
| | |strict-match | 5|exact_match|↑ |0.6293|± |0.0133|
Creation
from typing import List
from transformers import AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
MODEL_ID = "mistralai/Mixtral-8x7B-Instruct-v0.1"
NUM_GPUS = 2
# Adjust based off number of desired GPUs
device_map = calculate_offload_device_map(
MODEL_ID, reserve_for_hessians=True, num_gpus=NUM_GPUS, torch_dtype="auto"
)
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map=device_map, torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Dataset config parameters
DATASET_ID = "open_platypus"
MAX_SEQ_LENGTH = 2048
NUM_CALIBRATION_SAMPLES = 512
# Save location of quantized model
OUTPUT_DIR = f"{MODEL_ID.split('/')[-1]}-FP8"
SAVE_COMPRESSED = True
layers_to_ignore: List[str] = [
"lm_head",
"re:.*block_sparse_moe.gate", # does not quantize well
]
recipe = QuantizationModifier(
scheme="FP8", targets="Linear", ignore=layers_to_ignore
)
oneshot(
model=model,
tokenizer=tokenizer,
dataset=DATASET_ID,
recipe=recipe,
max_seq_length=MAX_SEQ_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
save_compressed=SAVE_COMPRESSED,
overwrite_output_dir=True,
output_dir=OUTPUT_DIR,
)
# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(output[0]))
print("==========================================")
- Downloads last month
- 3