SentenceTransformer based on michiyasunaga/BioLinkBERT-large
This is a sentence-transformers model finetuned from michiyasunaga/BioLinkBERT-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: michiyasunaga/BioLinkBERT-large
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'coactivator-associated arginine methyltransferase 1',
'tRNA methyltransferase 13 homolog',
'small nucleolar RNA SNORA17',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
val-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7654 |
spearman_cosine | 0.7408 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 180,794 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string int details - min: 3 tokens
- mean: 8.47 tokens
- max: 16 tokens
- min: 3 tokens
- mean: 7.63 tokens
- max: 21 tokens
- 0: ~52.50%
- 1: ~47.50%
- Samples:
text1 text2 label ENSRNOG00000007053
mediator complex subunit 7
1
ENSRNOG00000060932
small nucleolar RNA SNORA55
1
ENSRNOG00000015213
ENSRNOG00000024039
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 1.0, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 22,599 evaluation samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string int details - min: 3 tokens
- mean: 8.47 tokens
- max: 27 tokens
- min: 3 tokens
- mean: 7.73 tokens
- max: 22 tokens
- 0: ~54.50%
- 1: ~45.50%
- Samples:
text1 text2 label ENSRNOG00000001350
Naa25
1
ENSRNOG00000019570
Gng3
1
AABR07040892.1
ENSRNOG00000039203
1
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 1.0, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 3e-05num_train_epochs
: 100warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueddp_find_unused_parameters
: False
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 100max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Falseddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | val-eval_spearman_cosine |
---|---|---|---|---|
0.7072 | 500 | 0.1291 | - | - |
0.9986 | 706 | - | 0.1366 | -0.0396 |
1.4144 | 1000 | 0.1134 | - | - |
1.9972 | 1412 | - | 0.1040 | 0.3382 |
2.1216 | 1500 | 0.1066 | - | - |
2.8289 | 2000 | 0.0943 | - | - |
2.9958 | 2118 | - | 0.0867 | 0.5349 |
3.5361 | 2500 | 0.0863 | - | - |
3.9943 | 2824 | - | 0.0825 | 0.5669 |
4.2433 | 3000 | 0.0827 | - | - |
4.9505 | 3500 | 0.0806 | - | - |
4.9929 | 3530 | - | 0.0810 | 0.5764 |
5.6577 | 4000 | 0.0782 | - | - |
5.9915 | 4236 | - | 0.0785 | 0.5923 |
6.3649 | 4500 | 0.0774 | - | - |
6.9901 | 4942 | - | 0.0774 | 0.6017 |
7.0721 | 5000 | 0.0758 | - | - |
7.7793 | 5500 | 0.0735 | - | - |
7.9887 | 5648 | - | 0.0773 | 0.6034 |
8.4866 | 6000 | 0.0719 | - | - |
8.9873 | 6354 | - | 0.0765 | 0.6052 |
9.1938 | 6500 | 0.0701 | - | - |
9.9010 | 7000 | 0.0685 | - | - |
9.9859 | 7060 | - | 0.0753 | 0.6165 |
10.6082 | 7500 | 0.0651 | - | - |
10.9844 | 7766 | - | 0.0742 | 0.6215 |
11.3154 | 8000 | 0.0634 | - | - |
11.9830 | 8472 | - | 0.0730 | 0.6345 |
12.0226 | 8500 | 0.0612 | - | - |
12.7298 | 9000 | 0.0567 | - | - |
12.9816 | 9178 | - | 0.0720 | 0.6401 |
13.4371 | 9500 | 0.0538 | - | - |
13.9802 | 9884 | - | 0.0708 | 0.6514 |
14.1443 | 10000 | 0.0517 | - | - |
14.8515 | 10500 | 0.048 | - | - |
14.9788 | 10590 | - | 0.0691 | 0.6616 |
15.5587 | 11000 | 0.0436 | - | - |
15.9774 | 11296 | - | 0.0681 | 0.6692 |
16.2659 | 11500 | 0.0417 | - | - |
16.9731 | 12000 | 0.0394 | - | - |
16.9760 | 12002 | - | 0.0659 | 0.6819 |
17.6803 | 12500 | 0.0345 | - | - |
17.9745 | 12708 | - | 0.0636 | 0.6954 |
18.3876 | 13000 | 0.033 | - | - |
18.9731 | 13414 | - | 0.0621 | 0.7027 |
19.0948 | 13500 | 0.0313 | - | - |
19.8020 | 14000 | 0.028 | - | - |
19.9717 | 14120 | - | 0.0615 | 0.7066 |
20.5092 | 14500 | 0.0258 | - | - |
20.9703 | 14826 | - | 0.0598 | 0.7144 |
21.2164 | 15000 | 0.0249 | - | - |
21.9236 | 15500 | 0.0231 | - | - |
21.9689 | 15532 | - | 0.0587 | 0.7191 |
22.6308 | 16000 | 0.0207 | - | - |
22.9675 | 16238 | - | 0.0582 | 0.7215 |
23.3380 | 16500 | 0.0199 | - | - |
23.9661 | 16944 | - | 0.0575 | 0.7245 |
24.0453 | 17000 | 0.0194 | - | - |
24.7525 | 17500 | 0.0169 | - | - |
24.9646 | 17650 | - | 0.0562 | 0.7293 |
25.4597 | 18000 | 0.0161 | - | - |
25.9632 | 18356 | - | 0.0557 | 0.7327 |
26.1669 | 18500 | 0.0159 | - | - |
26.8741 | 19000 | 0.0146 | - | - |
26.9618 | 19062 | - | 0.0550 | 0.7342 |
27.5813 | 19500 | 0.0134 | - | - |
27.9604 | 19768 | - | 0.0551 | 0.7340 |
28.2885 | 20000 | 0.0132 | - | - |
28.9590 | 20474 | - | 0.0544 | 0.7373 |
28.9958 | 20500 | 0.0127 | - | - |
29.7030 | 21000 | 0.0112 | - | - |
29.9576 | 21180 | - | 0.0538 | 0.7387 |
30.4102 | 21500 | 0.011 | - | - |
30.9562 | 21886 | - | 0.0534 | 0.7403 |
31.1174 | 22000 | 0.0109 | - | - |
31.8246 | 22500 | 0.0099 | - | - |
31.9547 | 22592 | - | 0.0536 | 0.7402 |
32.5318 | 23000 | 0.0094 | - | - |
32.9533 | 23298 | - | 0.0530 | 0.7421 |
33.2390 | 23500 | 0.0093 | - | - |
33.9463 | 24000 | 0.0091 | - | - |
33.9519 | 24004 | - | 0.0528 | 0.7425 |
34.6535 | 24500 | 0.0081 | - | - |
34.9505 | 24710 | - | 0.0524 | 0.7435 |
35.3607 | 25000 | 0.0081 | - | - |
35.9491 | 25416 | - | 0.0529 | 0.7421 |
36.0679 | 25500 | 0.008 | - | - |
36.7751 | 26000 | 0.0072 | - | - |
36.9477 | 26122 | - | 0.0526 | 0.7426 |
37.4823 | 26500 | 0.007 | - | - |
37.9463 | 26828 | - | 0.0522 | 0.7439 |
38.1895 | 27000 | 0.007 | - | - |
38.8967 | 27500 | 0.0067 | - | - |
38.9448 | 27534 | - | 0.0529 | 0.7416 |
39.6040 | 28000 | 0.0062 | - | - |
39.9434 | 28240 | - | 0.0523 | 0.7425 |
40.3112 | 28500 | 0.0062 | - | - |
40.9420 | 28946 | - | 0.0529 | 0.7408 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 32
Model tree for mghuibregtse/biolinkbert-large-simcse-rat
Base model
michiyasunaga/BioLinkBERT-largeEvaluation results
- Pearson Cosine on val evalself-reported0.765
- Spearman Cosine on val evalself-reported0.741