SentenceTransformer based on michiyasunaga/BioLinkBERT-large

This is a sentence-transformers model finetuned from michiyasunaga/BioLinkBERT-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: michiyasunaga/BioLinkBERT-large
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'coactivator-associated arginine methyltransferase 1',
    'tRNA methyltransferase 13 homolog',
    'small nucleolar RNA SNORA17',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7654
spearman_cosine 0.7408

Training Details

Training Dataset

Unnamed Dataset

  • Size: 180,794 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 3 tokens
    • mean: 8.47 tokens
    • max: 16 tokens
    • min: 3 tokens
    • mean: 7.63 tokens
    • max: 21 tokens
    • 0: ~52.50%
    • 1: ~47.50%
  • Samples:
    text1 text2 label
    ENSRNOG00000007053 mediator complex subunit 7 1
    ENSRNOG00000060932 small nucleolar RNA SNORA55 1
    ENSRNOG00000015213 ENSRNOG00000024039 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 1.0,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 22,599 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 3 tokens
    • mean: 8.47 tokens
    • max: 27 tokens
    • min: 3 tokens
    • mean: 7.73 tokens
    • max: 22 tokens
    • 0: ~54.50%
    • 1: ~45.50%
  • Samples:
    text1 text2 label
    ENSRNOG00000001350 Naa25 1
    ENSRNOG00000019570 Gng3 1
    AABR07040892.1 ENSRNOG00000039203 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 1.0,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 3e-05
  • num_train_epochs: 100
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • ddp_find_unused_parameters: False

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 100
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: False
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss val-eval_spearman_cosine
0.7072 500 0.1291 - -
0.9986 706 - 0.1366 -0.0396
1.4144 1000 0.1134 - -
1.9972 1412 - 0.1040 0.3382
2.1216 1500 0.1066 - -
2.8289 2000 0.0943 - -
2.9958 2118 - 0.0867 0.5349
3.5361 2500 0.0863 - -
3.9943 2824 - 0.0825 0.5669
4.2433 3000 0.0827 - -
4.9505 3500 0.0806 - -
4.9929 3530 - 0.0810 0.5764
5.6577 4000 0.0782 - -
5.9915 4236 - 0.0785 0.5923
6.3649 4500 0.0774 - -
6.9901 4942 - 0.0774 0.6017
7.0721 5000 0.0758 - -
7.7793 5500 0.0735 - -
7.9887 5648 - 0.0773 0.6034
8.4866 6000 0.0719 - -
8.9873 6354 - 0.0765 0.6052
9.1938 6500 0.0701 - -
9.9010 7000 0.0685 - -
9.9859 7060 - 0.0753 0.6165
10.6082 7500 0.0651 - -
10.9844 7766 - 0.0742 0.6215
11.3154 8000 0.0634 - -
11.9830 8472 - 0.0730 0.6345
12.0226 8500 0.0612 - -
12.7298 9000 0.0567 - -
12.9816 9178 - 0.0720 0.6401
13.4371 9500 0.0538 - -
13.9802 9884 - 0.0708 0.6514
14.1443 10000 0.0517 - -
14.8515 10500 0.048 - -
14.9788 10590 - 0.0691 0.6616
15.5587 11000 0.0436 - -
15.9774 11296 - 0.0681 0.6692
16.2659 11500 0.0417 - -
16.9731 12000 0.0394 - -
16.9760 12002 - 0.0659 0.6819
17.6803 12500 0.0345 - -
17.9745 12708 - 0.0636 0.6954
18.3876 13000 0.033 - -
18.9731 13414 - 0.0621 0.7027
19.0948 13500 0.0313 - -
19.8020 14000 0.028 - -
19.9717 14120 - 0.0615 0.7066
20.5092 14500 0.0258 - -
20.9703 14826 - 0.0598 0.7144
21.2164 15000 0.0249 - -
21.9236 15500 0.0231 - -
21.9689 15532 - 0.0587 0.7191
22.6308 16000 0.0207 - -
22.9675 16238 - 0.0582 0.7215
23.3380 16500 0.0199 - -
23.9661 16944 - 0.0575 0.7245
24.0453 17000 0.0194 - -
24.7525 17500 0.0169 - -
24.9646 17650 - 0.0562 0.7293
25.4597 18000 0.0161 - -
25.9632 18356 - 0.0557 0.7327
26.1669 18500 0.0159 - -
26.8741 19000 0.0146 - -
26.9618 19062 - 0.0550 0.7342
27.5813 19500 0.0134 - -
27.9604 19768 - 0.0551 0.7340
28.2885 20000 0.0132 - -
28.9590 20474 - 0.0544 0.7373
28.9958 20500 0.0127 - -
29.7030 21000 0.0112 - -
29.9576 21180 - 0.0538 0.7387
30.4102 21500 0.011 - -
30.9562 21886 - 0.0534 0.7403
31.1174 22000 0.0109 - -
31.8246 22500 0.0099 - -
31.9547 22592 - 0.0536 0.7402
32.5318 23000 0.0094 - -
32.9533 23298 - 0.0530 0.7421
33.2390 23500 0.0093 - -
33.9463 24000 0.0091 - -
33.9519 24004 - 0.0528 0.7425
34.6535 24500 0.0081 - -
34.9505 24710 - 0.0524 0.7435
35.3607 25000 0.0081 - -
35.9491 25416 - 0.0529 0.7421
36.0679 25500 0.008 - -
36.7751 26000 0.0072 - -
36.9477 26122 - 0.0526 0.7426
37.4823 26500 0.007 - -
37.9463 26828 - 0.0522 0.7439
38.1895 27000 0.007 - -
38.8967 27500 0.0067 - -
38.9448 27534 - 0.0529 0.7416
39.6040 28000 0.0062 - -
39.9434 28240 - 0.0523 0.7425
40.3112 28500 0.0062 - -
40.9420 28946 - 0.0529 0.7408
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.1
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
32
Safetensors
Model size
333M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mghuibregtse/biolinkbert-large-simcse-rat

Finetuned
(5)
this model

Evaluation results