suas-2025-rtdetr-finetuned-b16-lr1e-4
This model is a fine-tuned version of PekingU/rtdetr_r50vd on the mfly-auton/suas-2025-synthetic-data dataset. It achieves the following results on the evaluation set:
- Loss: 7.4789
- Map: 0.636
- Map 50: 0.7833
- Map 75: 0.6825
- Map Small: 0.5292
- Map Medium: 0.6761
- Map Large: 0.6243
- Mar 1: 0.6914
- Mar 10: 0.8319
- Mar 100: 0.8459
- Mar Small: 0.6526
- Mar Medium: 0.861
- Mar Large: 0.9511
- Map Baseball-bat: 0.7327
- Mar 100 Baseball-bat: 0.8479
- Map Basketball: 0.7378
- Mar 100 Basketball: 0.8453
- Map Car: -1.0
- Mar 100 Car: -1.0
- Map Football: 0.515
- Mar 100 Football: 0.5874
- Map Human: 0.2845
- Mar 100 Human: 0.6493
- Map Luggage: 0.3927
- Mar 100 Luggage: 0.9199
- Map Mattress: 0.4605
- Mar 100 Mattress: 0.9731
- Map Motorcycle: 0.8921
- Mar 100 Motorcycle: 0.9379
- Map Skis: 0.9356
- Mar 100 Skis: 0.9772
- Map Snowboard: 0.4858
- Mar 100 Snowboard: 0.9648
- Map Soccer-ball: 0.291
- Mar 100 Soccer-ball: 0.5365
- Map Stop-sign: 0.8721
- Mar 100 Stop-sign: 0.9777
- Map Tennis-racket: 0.8872
- Mar 100 Tennis-racket: 0.9275
- Map Umbrella: 0.7926
- Mar 100 Umbrella: 0.945
- Map Volleyball: 0.6243
- Mar 100 Volleyball: 0.7525
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Baseball-bat | Mar 100 Baseball-bat | Map Basketball | Mar 100 Basketball | Map Car | Mar 100 Car | Map Football | Mar 100 Football | Map Human | Mar 100 Human | Map Luggage | Mar 100 Luggage | Map Mattress | Mar 100 Mattress | Map Motorcycle | Mar 100 Motorcycle | Map Skis | Mar 100 Skis | Map Snowboard | Mar 100 Snowboard | Map Soccer-ball | Mar 100 Soccer-ball | Map Stop-sign | Mar 100 Stop-sign | Map Tennis-racket | Mar 100 Tennis-racket | Map Umbrella | Mar 100 Umbrella | Map Volleyball | Mar 100 Volleyball |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14.9473 | 1.0 | 438 | 6.0393 | 0.6929 | 0.8006 | 0.7826 | 0.6924 | 0.6693 | 0.7428 | 0.7205 | 0.8507 | 0.8584 | 0.7888 | 0.8574 | 0.8979 | 0.7927 | 0.8492 | 0.8387 | 0.9263 | -1.0 | -1.0 | 0.5419 | 0.8203 | 0.2032 | 0.5136 | 0.4715 | 0.931 | 0.6218 | 0.9887 | 0.866 | 0.9199 | 0.8182 | 0.8782 | 0.5796 | 0.9515 | 0.6169 | 0.6753 | 0.9283 | 0.9732 | 0.814 | 0.8668 | 0.8116 | 0.8802 | 0.7961 | 0.8431 |
6.8045 | 2.0 | 876 | 5.2885 | 0.7468 | 0.8307 | 0.8234 | 0.7611 | 0.7249 | 0.6791 | 0.7565 | 0.8986 | 0.9052 | 0.8475 | 0.877 | 0.9424 | 0.8403 | 0.8959 | 0.8533 | 0.9358 | -1.0 | -1.0 | 0.7497 | 0.8638 | 0.1319 | 0.532 | 0.4374 | 0.9456 | 0.5892 | 0.9958 | 0.9306 | 0.9599 | 0.9652 | 0.9802 | 0.6246 | 0.995 | 0.7541 | 0.8175 | 0.9788 | 0.9958 | 0.8972 | 0.9316 | 0.9091 | 0.9701 | 0.7936 | 0.8532 |
6.122 | 3.0 | 1314 | 6.0592 | 0.7128 | 0.8135 | 0.7987 | 0.6996 | 0.7187 | 0.665 | 0.739 | 0.8748 | 0.8891 | 0.8104 | 0.8731 | 0.9347 | 0.8141 | 0.8864 | 0.8214 | 0.9197 | -1.0 | -1.0 | 0.7119 | 0.8346 | 0.1712 | 0.5716 | 0.3367 | 0.9129 | 0.4596 | 0.9784 | 0.9166 | 0.9472 | 0.9445 | 0.9718 | 0.6822 | 0.9922 | 0.6055 | 0.7355 | 0.9341 | 0.9659 | 0.8819 | 0.9207 | 0.9083 | 0.9698 | 0.7906 | 0.8409 |
5.7542 | 4.0 | 1752 | 6.7229 | 0.7089 | 0.8239 | 0.7984 | 0.6721 | 0.7153 | 0.6452 | 0.752 | 0.8732 | 0.8817 | 0.7591 | 0.8769 | 0.9587 | 0.7857 | 0.8574 | 0.835 | 0.9052 | -1.0 | -1.0 | 0.6519 | 0.7566 | 0.3228 | 0.6242 | 0.5068 | 0.9147 | 0.4086 | 0.9842 | 0.9254 | 0.9588 | 0.9363 | 0.9639 | 0.6089 | 0.9904 | 0.6176 | 0.7185 | 0.8906 | 0.9765 | 0.8719 | 0.9197 | 0.8104 | 0.9656 | 0.7532 | 0.8083 |
5.4197 | 5.0 | 2190 | 6.9705 | 0.6705 | 0.7896 | 0.7393 | 0.6309 | 0.6775 | 0.6347 | 0.7021 | 0.8427 | 0.8567 | 0.7156 | 0.8715 | 0.9375 | 0.8044 | 0.874 | 0.8447 | 0.8896 | -1.0 | -1.0 | 0.6092 | 0.6991 | 0.1786 | 0.5444 | 0.3152 | 0.8589 | 0.3916 | 0.946 | 0.943 | 0.9708 | 0.957 | 0.9782 | 0.521 | 0.9759 | 0.4336 | 0.5923 | 0.8949 | 0.9757 | 0.8747 | 0.9171 | 0.8842 | 0.9704 | 0.7354 | 0.8017 |
5.1598 | 6.0 | 2628 | 6.7201 | 0.6509 | 0.7806 | 0.7067 | 0.5621 | 0.6931 | 0.6332 | 0.6927 | 0.826 | 0.839 | 0.6904 | 0.8633 | 0.8993 | 0.7365 | 0.8412 | 0.8438 | 0.9021 | -1.0 | -1.0 | 0.5378 | 0.639 | 0.1533 | 0.4137 | 0.412 | 0.91 | 0.3546 | 0.9008 | 0.9302 | 0.967 | 0.9724 | 0.9881 | 0.5606 | 0.9739 | 0.3666 | 0.5918 | 0.8779 | 0.9642 | 0.843 | 0.8969 | 0.8855 | 0.9633 | 0.6379 | 0.7946 |
5.1626 | 7.0 | 3066 | 7.2974 | 0.644 | 0.7767 | 0.6936 | 0.5262 | 0.6787 | 0.6513 | 0.7043 | 0.8445 | 0.8587 | 0.6746 | 0.8942 | 0.9601 | 0.7639 | 0.8663 | 0.7068 | 0.8149 | -1.0 | -1.0 | 0.5452 | 0.6602 | 0.3086 | 0.6825 | 0.41 | 0.9299 | 0.4634 | 0.9747 | 0.9327 | 0.9679 | 0.9505 | 0.9797 | 0.4214 | 0.9677 | 0.2936 | 0.5483 | 0.852 | 0.9818 | 0.8823 | 0.9181 | 0.8924 | 0.9678 | 0.5933 | 0.7615 |
5.15 | 8.0 | 3504 | 7.2201 | 0.6572 | 0.7908 | 0.7113 | 0.5559 | 0.6962 | 0.6276 | 0.7048 | 0.8396 | 0.8534 | 0.6795 | 0.8702 | 0.9327 | 0.7574 | 0.8526 | 0.7803 | 0.8718 | -1.0 | -1.0 | 0.5741 | 0.6547 | 0.2742 | 0.5961 | 0.418 | 0.9233 | 0.4893 | 0.9697 | 0.91 | 0.9479 | 0.9345 | 0.9807 | 0.5642 | 0.9692 | 0.3294 | 0.5602 | 0.8803 | 0.9821 | 0.8794 | 0.9264 | 0.7936 | 0.9476 | 0.616 | 0.7659 |
4.9521 | 9.0 | 3942 | 7.5060 | 0.6374 | 0.7847 | 0.6838 | 0.5132 | 0.6921 | 0.6331 | 0.6868 | 0.8276 | 0.8419 | 0.6487 | 0.8619 | 0.9341 | 0.7388 | 0.8431 | 0.715 | 0.8273 | -1.0 | -1.0 | 0.5194 | 0.592 | 0.2577 | 0.624 | 0.3945 | 0.9234 | 0.4599 | 0.966 | 0.9031 | 0.942 | 0.9235 | 0.9752 | 0.5532 | 0.9694 | 0.2822 | 0.5368 | 0.9131 | 0.9855 | 0.8769 | 0.9244 | 0.8091 | 0.9438 | 0.5766 | 0.7336 |
4.8252 | 10.0 | 4380 | 7.4789 | 0.636 | 0.7833 | 0.6825 | 0.5292 | 0.6761 | 0.6243 | 0.6914 | 0.8319 | 0.8459 | 0.6526 | 0.861 | 0.9511 | 0.7327 | 0.8479 | 0.7378 | 0.8453 | -1.0 | -1.0 | 0.515 | 0.5874 | 0.2845 | 0.6493 | 0.3927 | 0.9199 | 0.4605 | 0.9731 | 0.8921 | 0.9379 | 0.9356 | 0.9772 | 0.4858 | 0.9648 | 0.291 | 0.5365 | 0.8721 | 0.9777 | 0.8872 | 0.9275 | 0.7926 | 0.945 | 0.6243 | 0.7525 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mfly-auton/suas-2025-rtdetr-finetuned-b16-lr1e-4
Base model
PekingU/rtdetr_r50vd