music-generation
This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5312
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.7238 | 0.9217 | 100 | 2.8460 |
2.4643 | 1.8387 | 200 | 1.8829 |
1.8339 | 2.7558 | 300 | 1.4234 |
1.5013 | 3.6728 | 400 | 1.2203 |
1.3125 | 4.5899 | 500 | 1.0966 |
1.1899 | 5.5069 | 600 | 1.0028 |
1.0982 | 6.4240 | 700 | 0.9353 |
1.0302 | 7.3410 | 800 | 0.8779 |
0.9766 | 8.2581 | 900 | 0.8276 |
0.9243 | 9.1751 | 1000 | 0.7757 |
0.8825 | 10.0922 | 1100 | 0.7345 |
0.845 | 11.0092 | 1200 | 0.7000 |
0.8083 | 11.9309 | 1300 | 0.6624 |
0.7784 | 12.8479 | 1400 | 0.6328 |
0.7502 | 13.7650 | 1500 | 0.6052 |
0.7281 | 14.6820 | 1600 | 0.5816 |
0.7072 | 15.5991 | 1700 | 0.5622 |
0.6903 | 16.5161 | 1800 | 0.5486 |
0.6796 | 17.4332 | 1900 | 0.5386 |
0.6705 | 18.3502 | 2000 | 0.5335 |
0.6646 | 19.2673 | 2100 | 0.5312 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 34
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for metoonhathung/music-generation
Base model
openai-community/gpt2