turkish-ner-mBERT-03

This model is a fine-tuned version of bert-base-multilingual-cased on the turkish_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0340
  • F1: 0.9499
  • Precision: 0.9514
  • Recall: 0.9483
  • Accuracy: 0.9900

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.3699 1.0 625 0.2191 0.6830 0.6971 0.6693 0.9216
0.2451 2.0 1250 0.1407 0.8042 0.8068 0.8017 0.9527
0.1818 3.0 1875 0.0799 0.8785 0.8828 0.8742 0.9733
0.0964 4.0 2500 0.0489 0.9295 0.9252 0.9339 0.9852
0.0635 5.0 3125 0.0340 0.9499 0.9514 0.9483 0.9900

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
29
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Providers NEW

Model tree for meryemmm22/turkish-ner-mBERT-03

Finetuned
(779)
this model

Dataset used to train meryemmm22/turkish-ner-mBERT-03

Evaluation results