7b-claude-32k-20250419_144159-2ep
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2546
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3222 | 0.0141 | 1 | 0.3511 |
0.4486 | 0.0282 | 2 | 0.3453 |
0.2803 | 0.0423 | 3 | 0.3267 |
0.4093 | 0.0563 | 4 | 0.3111 |
0.3198 | 0.0704 | 5 | 0.3250 |
0.2777 | 0.0845 | 6 | 0.3242 |
0.3484 | 0.0986 | 7 | 0.3306 |
0.3831 | 0.1127 | 8 | 0.3230 |
0.3736 | 0.1268 | 9 | 0.3133 |
0.2953 | 0.1408 | 10 | 0.3018 |
0.2026 | 0.1549 | 11 | 0.2956 |
0.34 | 0.1690 | 12 | 0.2912 |
0.3512 | 0.1831 | 13 | 0.2871 |
0.266 | 0.1972 | 14 | 0.2841 |
0.2418 | 0.2113 | 15 | 0.2817 |
0.341 | 0.2254 | 16 | 0.2793 |
0.2892 | 0.2394 | 17 | 0.2771 |
0.2588 | 0.2535 | 18 | 0.2754 |
0.2445 | 0.2676 | 19 | 0.2743 |
0.2154 | 0.2817 | 20 | 0.2734 |
0.3088 | 0.2958 | 21 | 0.2720 |
0.3071 | 0.3099 | 22 | 0.2706 |
0.2722 | 0.3239 | 23 | 0.2696 |
0.2445 | 0.3380 | 24 | 0.2688 |
0.3157 | 0.3521 | 25 | 0.2682 |
0.2631 | 0.3662 | 26 | 0.2677 |
0.2585 | 0.3803 | 27 | 0.2670 |
0.2227 | 0.3944 | 28 | 0.2662 |
0.3109 | 0.4085 | 29 | 0.2654 |
0.2332 | 0.4225 | 30 | 0.2647 |
0.2941 | 0.4366 | 31 | 0.2640 |
0.2865 | 0.4507 | 32 | 0.2635 |
0.2643 | 0.4648 | 33 | 0.2630 |
0.2841 | 0.4789 | 34 | 0.2626 |
0.2545 | 0.4930 | 35 | 0.2622 |
0.2545 | 0.5070 | 36 | 0.2616 |
0.2576 | 0.5211 | 37 | 0.2611 |
0.2972 | 0.5352 | 38 | 0.2606 |
0.2037 | 0.5493 | 39 | 0.2603 |
0.3232 | 0.5634 | 40 | 0.2600 |
0.3188 | 0.5775 | 41 | 0.2596 |
0.2772 | 0.5915 | 42 | 0.2592 |
0.2533 | 0.6056 | 43 | 0.2587 |
0.3034 | 0.6197 | 44 | 0.2582 |
0.2451 | 0.6338 | 45 | 0.2578 |
0.2246 | 0.6479 | 46 | 0.2574 |
0.2677 | 0.6620 | 47 | 0.2572 |
0.1886 | 0.6761 | 48 | 0.2568 |
0.2283 | 0.6901 | 49 | 0.2566 |
0.2043 | 0.7042 | 50 | 0.2564 |
0.2563 | 0.7183 | 51 | 0.2563 |
0.198 | 0.7324 | 52 | 0.2561 |
0.2197 | 0.7465 | 53 | 0.2560 |
0.2397 | 0.7606 | 54 | 0.2558 |
0.3545 | 0.7746 | 55 | 0.2557 |
0.2461 | 0.7887 | 56 | 0.2555 |
0.2237 | 0.8028 | 57 | 0.2554 |
0.2927 | 0.8169 | 58 | 0.2553 |
0.3508 | 0.8310 | 59 | 0.2551 |
0.2562 | 0.8451 | 60 | 0.2550 |
0.2408 | 0.8592 | 61 | 0.2549 |
0.2268 | 0.8732 | 62 | 0.2548 |
0.206 | 0.8873 | 63 | 0.2548 |
0.297 | 0.9014 | 64 | 0.2547 |
0.2448 | 0.9155 | 65 | 0.2546 |
0.2219 | 0.9296 | 66 | 0.2546 |
0.2715 | 0.9437 | 67 | 0.2546 |
0.3815 | 0.9577 | 68 | 0.2546 |
0.2862 | 0.9718 | 69 | 0.2546 |
0.2526 | 0.9859 | 70 | 0.2545 |
0.1974 | 1.0 | 71 | 0.2546 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support