Visualize in Weights & Biases

Llama-3.1-8B-Instruct-sft-5e-3-epoch-100-xsum

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the meng-lab/Llama-3.1-8B-Instruct-xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 6.7117
  • Loss Layer 4 Head: 1.7377
  • Loss Layer 8 Head: 1.4957
  • Loss Layer 12 Head: 1.4384
  • Loss Layer 16 Head: 0.9421
  • Loss Layer 20 Head: 0.5804
  • Loss Layer 24 Head: 0.3724
  • Loss Layer 28 Head: 0.1958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Loss Layer 4 Head Loss Layer 8 Head Loss Layer 12 Head Loss Layer 16 Head Loss Layer 20 Head Loss Layer 24 Head Loss Layer 28 Head
9.417 9.5522 200 10.6034 2.1800 2.1484 1.8370 1.5560 0.8850 0.7908 1.1904
7.0666 19.1045 400 8.3242 2.0259 1.8363 1.7901 1.0876 0.8469 0.4822 0.2917
6.5999 28.6567 600 7.8689 1.9122 1.7362 1.7044 1.0472 0.6722 0.4620 0.3698
5.8586 38.2090 800 7.5812 2.0916 1.5734 1.6211 1.0056 0.6192 0.4660 0.2400
5.4725 47.7612 1000 7.0153 1.8457 1.5162 1.4691 0.9794 0.6236 0.3980 0.2260
5.3026 57.3134 1200 7.0204 1.9164 1.5058 1.5172 0.9522 0.5897 0.3804 0.2035
4.9989 66.8657 1400 6.7446 1.7458 1.5005 1.4430 0.9468 0.5843 0.3757 0.1990
4.9163 76.4179 1600 6.7228 1.7406 1.4972 1.4401 0.9436 0.5816 0.3734 0.1968
4.9194 85.9701 1800 6.7132 1.7381 1.4960 1.4385 0.9424 0.5807 0.3726 0.1959
4.9063 95.5224 2000 6.7117 1.7377 1.4957 1.4384 0.9421 0.5804 0.3724 0.1958

Framework versions

  • Transformers 4.43.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
8.15B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for meng-lab/llama_3.1_8b_instruct_paradec_xsum

Finetuned
(1113)
this model

Dataset used to train meng-lab/llama_3.1_8b_instruct_paradec_xsum

Collection including meng-lab/llama_3.1_8b_instruct_paradec_xsum