results_bert

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4209
  • Accuracy: 0.8661

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 120 0.6514 0.6248
No log 2.0 240 0.5753 0.7198
No log 3.0 360 0.6240 0.6720
No log 4.0 480 0.4622 0.7847
0.6066 5.0 600 0.5026 0.7693
0.6066 6.0 720 0.4972 0.7817
0.6066 7.0 840 0.4209 0.7947
0.6066 8.0 960 0.4197 0.8142
0.4452 9.0 1080 0.5085 0.7935
0.4452 10.0 1200 0.3948 0.8265
0.4452 11.0 1320 0.3898 0.8307
0.4452 12.0 1440 0.3542 0.8490
0.322 13.0 1560 0.4070 0.8342
0.322 14.0 1680 0.3532 0.8454
0.322 15.0 1800 0.4472 0.8319
0.322 16.0 1920 0.3935 0.8549
0.2358 17.0 2040 0.3641 0.8625
0.2358 18.0 2160 0.3950 0.8614
0.2358 19.0 2280 0.4140 0.8655
0.2358 20.0 2400 0.4209 0.8661

Framework versions

  • Transformers 4.53.0
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
6
Safetensors
Model size
150M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for melisa/results_bert

Finetuned
(601)
this model