SentenceTransformer based on sentence-transformers/quora-distilbert-multilingual
This is a sentence-transformers model finetuned from sentence-transformers/quora-distilbert-multilingual. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/quora-distilbert-multilingual
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("melino2000/product-torob-matching")
# Run inference
sentences = [
'رایزر گرافیک مدل 009s plus هشت خازنه',
'رایزر گرافیک تبدیل PCI EXPRESS X1 به X16 مدل 009S',
'شامپو کودک حاوی عصاره اسطوخودوس فیروز200 میل',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
product-matching-binary
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9908 |
cosine_accuracy_threshold | 0.7373 |
cosine_f1 | 0.9908 |
cosine_f1_threshold | 0.7295 |
cosine_precision | 0.99 |
cosine_recall | 0.9915 |
cosine_ap | 0.9989 |
cosine_mcc | 0.9815 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 32,000 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 19.0 tokens
- max: 68 tokens
- min: 5 tokens
- mean: 19.06 tokens
- max: 56 tokens
- 0: ~49.40%
- 1: ~50.60%
- Samples:
sentence1 sentence2 label پرینتر چندکاره لیزری HP LaserJet Pro M130a
پرینتر لیزری سه کاره اچ پی HP M130a
1
قرص روکشدار مولتی دیلی دکتر گیل 60 عددی داروسازی رازان فارمدیان
قرص مولتی دیلی دکتر گیل
1
خمیردندان کلگیت 3 کاره Triple Action
100 میل خمیر دندان کولگیت مدل 3 کاره حجم 100 میل
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 8,000 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 19.24 tokens
- max: 69 tokens
- min: 2 tokens
- mean: 18.76 tokens
- max: 56 tokens
- 0: ~50.00%
- 1: ~50.00%
- Samples:
sentence1 sentence2 label مایکرو فر 36 لیتری ناسا الکتریک مدل NS-2024
سرویس کاور روتختی تک نفره ایکیا مدل Ikea BRUNKRISSLA 404.907.23
0
کنسول بازی نینتندو سوییچ سفید - Nintendo Switch OLED Model white
NINTENDO SWITCH OLED (Neon Red & Neon Blue)
1
خمیر دندان کرست مدل Complete 7
قلمو سرگرد 2122 پارس آرت (32400_107700 تومان)
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | product-matching-binary_cosine_ap |
---|---|---|---|---|
-1 | -1 | - | - | 0.9436 |
0.1 | 100 | 0.637 | - | - |
0.2 | 200 | 0.1303 | - | - |
0.25 | 250 | - | 0.0785 | 0.9961 |
0.3 | 300 | 0.1378 | - | - |
0.4 | 400 | 0.1191 | - | - |
0.5 | 500 | 0.0949 | 0.0723 | 0.9963 |
0.6 | 600 | 0.1016 | - | - |
0.7 | 700 | 0.0694 | - | - |
0.75 | 750 | - | 0.0464 | 0.9974 |
0.8 | 800 | 0.0619 | - | - |
0.9 | 900 | 0.0543 | - | - |
1.0 | 1000 | 0.0658 | 0.0394 | 0.9981 |
1.1 | 1100 | 0.0326 | - | - |
1.2 | 1200 | 0.0176 | - | - |
1.25 | 1250 | - | 0.0387 | 0.9980 |
1.3 | 1300 | 0.0237 | - | - |
1.4 | 1400 | 0.0219 | - | - |
1.5 | 1500 | 0.0115 | 0.0259 | 0.9983 |
1.6 | 1600 | 0.0218 | - | - |
1.7 | 1700 | 0.0235 | - | - |
1.75 | 1750 | - | 0.0230 | 0.9988 |
1.8 | 1800 | 0.0319 | - | - |
1.9 | 1900 | 0.0127 | - | - |
2.0 | 2000 | 0.015 | 0.0285 | 0.9987 |
2.099 | 2100 | 0.0121 | - | - |
2.199 | 2200 | 0.0091 | - | - |
2.249 | 2250 | - | 0.0217 | 0.9986 |
2.299 | 2300 | 0.0107 | - | - |
2.399 | 2400 | 0.009 | - | - |
2.499 | 2500 | 0.0043 | 0.0224 | 0.9989 |
2.599 | 2600 | 0.0028 | - | - |
2.699 | 2700 | 0.0026 | - | - |
2.749 | 2750 | - | 0.0248 | 0.9989 |
2.799 | 2800 | 0.0024 | - | - |
2.899 | 2900 | 0.0067 | - | - |
2.999 | 3000 | 0.0088 | 0.0225 | 0.9989 |
-1 | -1 | - | - | 0.9989 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for melino2000/product-torob-matching
Evaluation results
- Cosine Accuracy on product matching binaryself-reported0.991
- Cosine Accuracy Threshold on product matching binaryself-reported0.737
- Cosine F1 on product matching binaryself-reported0.991
- Cosine F1 Threshold on product matching binaryself-reported0.730
- Cosine Precision on product matching binaryself-reported0.990
- Cosine Recall on product matching binaryself-reported0.992
- Cosine Ap on product matching binaryself-reported0.999
- Cosine Mcc on product matching binaryself-reported0.982