Instruction

For more information, visit our GitHub repository: https://github.com/medfound/medfound

Quickstart

import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM

model_path = "medicalai/ClinicalGPT-R1-Qwen-7B-CN-preview "
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
data = pd.read_json('data/test.zip', lines=True).iloc[1]

prompt = f"{data["context"]}\n\n请对该病历提供详细、全面的诊断分析,并给出诊断结果。\n"
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

input_ids = tokenizer([text], return_tensors="pt").to(model.device)
output_ids = model.generate(**input_ids, max_new_tokens=2048, temperature=0.7, do_sample=True).to(model.device)
generated_text = tokenizer.decode(output_ids[0,len(input_ids[0]):], skip_special_tokens=True)
print("Generated Output:\n", generated_text)

Citation

If you find our work helpful, feel free to give us a cite.

Wang, G., Liu, X., Liu, H., Yang, G. et al. A Generalist Medical Language Model for Disease Diagnosis Assistance. Nat Med (2025). https://doi.org/10.1038/s41591-024-03416-6
Downloads last month
24
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for medicalai/ClinicalGPT-R1-Qwen-7B-CN-preview

Base model

Qwen/Qwen2.5-7B
Finetuned
(2232)
this model
Quantizations
1 model