meandyou200175's picture
Add new SentenceTransformer model
f5ba522 verified
|
raw
history blame
21.4 kB
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:9316
  - loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-large
widget:
  - source_sentence: >-
      Horn band legwearis a type oflegwear, oftenthighhighs, with
      ahornedcharacter design along the upper band.
    sentences:
      - horn band legwear
      - head out of frame
      - sweatpants
  - source_sentence: >-
      When a character is looping the laces of theiruntied shoelacesinto a
      sturdy bow.
    sentences:
      - hair tie
      - tying footwear
      - loose necktie
  - source_sentence: >-
      Use this tag if the person's eyewear isremovedfrom their usual place and
      carried in the hands. If it still rests on the bridge of the nose or head,
      seeadjusting eyewearand its related tags.
    sentences:
      - cow costume
      - sarong
      - holding removed eyewear
  - source_sentence: When both of a character's hands are on another character'sthighs.
    sentences:
      - baking
      - triplets
      - hands on another's thighs
  - source_sentence: >-
      A long appendage protruding from the lower back. Often covered in fur or
      scales. A common feature of animal girls.
    sentences:
      - tail
      - grey-framed eyewear
      - stomach day
datasets:
  - meandyou200175/word_embedding
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@2
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_accuracy@100
  - cosine_precision@1
  - cosine_precision@2
  - cosine_precision@5
  - cosine_precision@10
  - cosine_precision@100
  - cosine_recall@1
  - cosine_recall@2
  - cosine_recall@5
  - cosine_recall@10
  - cosine_recall@100
  - cosine_ndcg@10
  - cosine_mrr@1
  - cosine_mrr@2
  - cosine_mrr@5
  - cosine_mrr@10
  - cosine_mrr@100
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-large
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.8108108108108109
            name: Cosine Accuracy@1
          - type: cosine_accuracy@2
            value: 0.8957528957528957
            name: Cosine Accuracy@2
          - type: cosine_accuracy@5
            value: 0.9382239382239382
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9642857142857143
            name: Cosine Accuracy@10
          - type: cosine_accuracy@100
            value: 0.9932432432432432
            name: Cosine Accuracy@100
          - type: cosine_precision@1
            value: 0.8108108108108109
            name: Cosine Precision@1
          - type: cosine_precision@2
            value: 0.44787644787644787
            name: Cosine Precision@2
          - type: cosine_precision@5
            value: 0.18764478764478765
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09642857142857143
            name: Cosine Precision@10
          - type: cosine_precision@100
            value: 0.009932432432432433
            name: Cosine Precision@100
          - type: cosine_recall@1
            value: 0.8108108108108109
            name: Cosine Recall@1
          - type: cosine_recall@2
            value: 0.8957528957528957
            name: Cosine Recall@2
          - type: cosine_recall@5
            value: 0.9382239382239382
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9642857142857143
            name: Cosine Recall@10
          - type: cosine_recall@100
            value: 0.9932432432432432
            name: Cosine Recall@100
          - type: cosine_ndcg@10
            value: 0.8923095558988695
            name: Cosine Ndcg@10
          - type: cosine_mrr@1
            value: 0.8108108108108109
            name: Cosine Mrr@1
          - type: cosine_mrr@2
            value: 0.8532818532818532
            name: Cosine Mrr@2
          - type: cosine_mrr@5
            value: 0.8649292149292154
            name: Cosine Mrr@5
          - type: cosine_mrr@10
            value: 0.8687695348409635
            name: Cosine Mrr@10
          - type: cosine_mrr@100
            value: 0.8700193430588538
            name: Cosine Mrr@100
          - type: cosine_map@100
            value: 0.8700193430588539
            name: Cosine Map@100

SentenceTransformer based on intfloat/multilingual-e5-large

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on the word_embedding dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-large
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("meandyou200175/e5_large_finetune_word")
# Run inference
sentences = [
    'A long appendage protruding from the lower back. Often covered in fur or scales. A common feature of animal girls.',
    'tail',
    'stomach day',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8108
cosine_accuracy@2 0.8958
cosine_accuracy@5 0.9382
cosine_accuracy@10 0.9643
cosine_accuracy@100 0.9932
cosine_precision@1 0.8108
cosine_precision@2 0.4479
cosine_precision@5 0.1876
cosine_precision@10 0.0964
cosine_precision@100 0.0099
cosine_recall@1 0.8108
cosine_recall@2 0.8958
cosine_recall@5 0.9382
cosine_recall@10 0.9643
cosine_recall@100 0.9932
cosine_ndcg@10 0.8923
cosine_mrr@1 0.8108
cosine_mrr@2 0.8533
cosine_mrr@5 0.8649
cosine_mrr@10 0.8688
cosine_mrr@100 0.87
cosine_map@100 0.87

Training Details

Training Dataset

word_embedding

  • Dataset: word_embedding at af76b11
  • Size: 9,316 training samples
  • Columns: query and positive
  • Approximate statistics based on the first 1000 samples:
    query positive
    type string string
    details
    • min: 3 tokens
    • mean: 36.54 tokens
    • max: 177 tokens
    • min: 3 tokens
    • mean: 5.3 tokens
    • max: 13 tokens
  • Samples:
    query positive
    Eyewear shaped like a semicircle. semi-circular eyewear
    A handheld electric appliance used fordryingand styling hair. hair dryer
    When onebreastis exposed while the other remains covered or confined by clothing. Seebreasts outfor when both breasts are exposed. one breast out
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

word_embedding

  • Dataset: word_embedding at af76b11
  • Size: 1,036 evaluation samples
  • Columns: query and positive
  • Approximate statistics based on the first 1000 samples:
    query positive
    type string string
    details
    • min: 4 tokens
    • mean: 35.89 tokens
    • max: 164 tokens
    • min: 3 tokens
    • mean: 5.38 tokens
    • max: 14 tokens
  • Samples:
    query positive
    A machine that manipulates data according to a list of instructions. The ability to store and execute lists of instructions called programs make computers extremely versatile. On Danbooru's images they are most often used fordrawing,playing gamesand accessing theinternet. computer
    Aplaying cardwith twoclubs. two of clubs
    Yebisu (ヱビス, Ebisu) is a beer produced bySapporo Breweries. It is one of Japan's oldest brands, first being brewed in Tokyo in 1890 by the Japan Beer Brewery Company. yebisu
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_ndcg@10
-1 -1 - - 0.7166
0.1715 100 0.8892 - -
0.3431 200 0.1724 - -
0.5146 300 0.1783 - -
0.6861 400 0.1393 - -
0.8576 500 0.1262 - -
1.0292 600 0.1046 - -
1.2007 700 0.0639 - -
1.3722 800 0.0692 - -
1.5437 900 0.043 - -
1.7153 1000 0.0614 0.0819 0.8774
1.8868 1100 0.0538 - -
2.0583 1200 0.0414 - -
2.2298 1300 0.0146 - -
2.4014 1400 0.0164 - -
2.5729 1500 0.0225 - -
2.7444 1600 0.0215 - -
2.9160 1700 0.0271 - -
3.0875 1800 0.0202 - -
3.2590 1900 0.0194 - -
3.4305 2000 0.0144 0.0682 0.8923
3.6021 2100 0.0118 - -
3.7736 2200 0.0155 - -
3.9451 2300 0.0177 - -
4.1166 2400 0.0059 - -
4.2882 2500 0.0099 - -
4.4597 2600 0.0056 - -
4.6312 2700 0.0153 - -
4.8027 2800 0.0069 - -
4.9743 2900 0.01 - -

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}