metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9316
- loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-large
widget:
- source_sentence: >-
Horn band legwearis a type oflegwear, oftenthighhighs, with
ahornedcharacter design along the upper band.
sentences:
- horn band legwear
- head out of frame
- sweatpants
- source_sentence: >-
When a character is looping the laces of theiruntied shoelacesinto a
sturdy bow.
sentences:
- hair tie
- tying footwear
- loose necktie
- source_sentence: >-
Use this tag if the person's eyewear isremovedfrom their usual place and
carried in the hands. If it still rests on the bridge of the nose or head,
seeadjusting eyewearand its related tags.
sentences:
- cow costume
- sarong
- holding removed eyewear
- source_sentence: When both of a character's hands are on another character'sthighs.
sentences:
- baking
- triplets
- hands on another's thighs
- source_sentence: >-
A long appendage protruding from the lower back. Often covered in fur or
scales. A common feature of animal girls.
sentences:
- tail
- grey-framed eyewear
- stomach day
datasets:
- meandyou200175/word_embedding
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@2
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_accuracy@100
- cosine_precision@1
- cosine_precision@2
- cosine_precision@5
- cosine_precision@10
- cosine_precision@100
- cosine_recall@1
- cosine_recall@2
- cosine_recall@5
- cosine_recall@10
- cosine_recall@100
- cosine_ndcg@10
- cosine_mrr@1
- cosine_mrr@2
- cosine_mrr@5
- cosine_mrr@10
- cosine_mrr@100
- cosine_map@100
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.8108108108108109
name: Cosine Accuracy@1
- type: cosine_accuracy@2
value: 0.8957528957528957
name: Cosine Accuracy@2
- type: cosine_accuracy@5
value: 0.9382239382239382
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9642857142857143
name: Cosine Accuracy@10
- type: cosine_accuracy@100
value: 0.9932432432432432
name: Cosine Accuracy@100
- type: cosine_precision@1
value: 0.8108108108108109
name: Cosine Precision@1
- type: cosine_precision@2
value: 0.44787644787644787
name: Cosine Precision@2
- type: cosine_precision@5
value: 0.18764478764478765
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09642857142857143
name: Cosine Precision@10
- type: cosine_precision@100
value: 0.009932432432432433
name: Cosine Precision@100
- type: cosine_recall@1
value: 0.8108108108108109
name: Cosine Recall@1
- type: cosine_recall@2
value: 0.8957528957528957
name: Cosine Recall@2
- type: cosine_recall@5
value: 0.9382239382239382
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9642857142857143
name: Cosine Recall@10
- type: cosine_recall@100
value: 0.9932432432432432
name: Cosine Recall@100
- type: cosine_ndcg@10
value: 0.8923095558988695
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.8108108108108109
name: Cosine Mrr@1
- type: cosine_mrr@2
value: 0.8532818532818532
name: Cosine Mrr@2
- type: cosine_mrr@5
value: 0.8649292149292154
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.8687695348409635
name: Cosine Mrr@10
- type: cosine_mrr@100
value: 0.8700193430588538
name: Cosine Mrr@100
- type: cosine_map@100
value: 0.8700193430588539
name: Cosine Map@100
SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on the word_embedding dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("meandyou200175/e5_large_finetune_word")
# Run inference
sentences = [
'A long appendage protruding from the lower back. Often covered in fur or scales. A common feature of animal girls.',
'tail',
'stomach day',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8108 |
cosine_accuracy@2 | 0.8958 |
cosine_accuracy@5 | 0.9382 |
cosine_accuracy@10 | 0.9643 |
cosine_accuracy@100 | 0.9932 |
cosine_precision@1 | 0.8108 |
cosine_precision@2 | 0.4479 |
cosine_precision@5 | 0.1876 |
cosine_precision@10 | 0.0964 |
cosine_precision@100 | 0.0099 |
cosine_recall@1 | 0.8108 |
cosine_recall@2 | 0.8958 |
cosine_recall@5 | 0.9382 |
cosine_recall@10 | 0.9643 |
cosine_recall@100 | 0.9932 |
cosine_ndcg@10 | 0.8923 |
cosine_mrr@1 | 0.8108 |
cosine_mrr@2 | 0.8533 |
cosine_mrr@5 | 0.8649 |
cosine_mrr@10 | 0.8688 |
cosine_mrr@100 | 0.87 |
cosine_map@100 | 0.87 |
Training Details
Training Dataset
word_embedding
- Dataset: word_embedding at af76b11
- Size: 9,316 training samples
- Columns:
query
andpositive
- Approximate statistics based on the first 1000 samples:
query positive type string string details - min: 3 tokens
- mean: 36.54 tokens
- max: 177 tokens
- min: 3 tokens
- mean: 5.3 tokens
- max: 13 tokens
- Samples:
query positive Eyewear shaped like a semicircle.
semi-circular eyewear
A handheld electric appliance used fordryingand styling hair.
hair dryer
When onebreastis exposed while the other remains covered or confined by clothing. Seebreasts outfor when both breasts are exposed.
one breast out
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
word_embedding
- Dataset: word_embedding at af76b11
- Size: 1,036 evaluation samples
- Columns:
query
andpositive
- Approximate statistics based on the first 1000 samples:
query positive type string string details - min: 4 tokens
- mean: 35.89 tokens
- max: 164 tokens
- min: 3 tokens
- mean: 5.38 tokens
- max: 14 tokens
- Samples:
query positive A machine that manipulates data according to a list of instructions. The ability to store and execute lists of instructions called programs make computers extremely versatile. On Danbooru's images they are most often used fordrawing,playing gamesand accessing theinternet.
computer
Aplaying cardwith twoclubs.
two of clubs
Yebisu (ヱビス, Ebisu) is a beer produced bySapporo Breweries. It is one of Japan's oldest brands, first being brewed in Tokyo in 1890 by the Japan Beer Brewery Company.
yebisu
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 |
---|---|---|---|---|
-1 | -1 | - | - | 0.7166 |
0.1715 | 100 | 0.8892 | - | - |
0.3431 | 200 | 0.1724 | - | - |
0.5146 | 300 | 0.1783 | - | - |
0.6861 | 400 | 0.1393 | - | - |
0.8576 | 500 | 0.1262 | - | - |
1.0292 | 600 | 0.1046 | - | - |
1.2007 | 700 | 0.0639 | - | - |
1.3722 | 800 | 0.0692 | - | - |
1.5437 | 900 | 0.043 | - | - |
1.7153 | 1000 | 0.0614 | 0.0819 | 0.8774 |
1.8868 | 1100 | 0.0538 | - | - |
2.0583 | 1200 | 0.0414 | - | - |
2.2298 | 1300 | 0.0146 | - | - |
2.4014 | 1400 | 0.0164 | - | - |
2.5729 | 1500 | 0.0225 | - | - |
2.7444 | 1600 | 0.0215 | - | - |
2.9160 | 1700 | 0.0271 | - | - |
3.0875 | 1800 | 0.0202 | - | - |
3.2590 | 1900 | 0.0194 | - | - |
3.4305 | 2000 | 0.0144 | 0.0682 | 0.8923 |
3.6021 | 2100 | 0.0118 | - | - |
3.7736 | 2200 | 0.0155 | - | - |
3.9451 | 2300 | 0.0177 | - | - |
4.1166 | 2400 | 0.0059 | - | - |
4.2882 | 2500 | 0.0099 | - | - |
4.4597 | 2600 | 0.0056 | - | - |
4.6312 | 2700 | 0.0153 | - | - |
4.8027 | 2800 | 0.0069 | - | - |
4.9743 | 2900 | 0.01 | - | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}