bert-base-multilingual-cased-FakeNews-Dravidian-mBert

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4452
  • Accuracy: 0.8307
  • Weighted f1 score: 0.8305
  • Macro f1 score: 0.8305

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted f1 score Macro f1 score
0.7901 1.0 204 0.6155 0.7067 0.6999 0.7000
0.5829 2.0 408 0.4932 0.8037 0.8036 0.8036
0.4813 3.0 612 0.4437 0.8135 0.8130 0.8129
0.4298 4.0 816 0.4182 0.8123 0.8123 0.8123
0.3896 5.0 1020 0.4068 0.8221 0.8219 0.8219
0.3411 6.0 1224 0.3999 0.8209 0.8209 0.8209
0.314 7.0 1428 0.4030 0.8307 0.8305 0.8305
0.2982 8.0 1632 0.4084 0.8270 0.8269 0.8269
0.279 9.0 1836 0.4129 0.8319 0.8316 0.8315
0.2502 10.0 2040 0.4120 0.8307 0.8306 0.8305
0.2328 11.0 2244 0.4256 0.8368 0.8364 0.8364
0.2168 12.0 2448 0.4480 0.8393 0.8388 0.8388
0.2246 13.0 2652 0.4463 0.8294 0.8292 0.8292
0.2149 14.0 2856 0.4411 0.8307 0.8306 0.8305
0.2077 15.0 3060 0.4452 0.8307 0.8305 0.8305

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.11.0
  • Tokenizers 0.14.1
Downloads last month
12
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mdosama39/bert-base-multilingual-cased-FakeNews-Dravidian-mBert

Finetuned
(779)
this model