bert-base-multilingual-cased-FakeNews-Dravidian-mBert
This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4452
- Accuracy: 0.8307
- Weighted f1 score: 0.8305
- Macro f1 score: 0.8305
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 score | Macro f1 score |
---|---|---|---|---|---|---|
0.7901 | 1.0 | 204 | 0.6155 | 0.7067 | 0.6999 | 0.7000 |
0.5829 | 2.0 | 408 | 0.4932 | 0.8037 | 0.8036 | 0.8036 |
0.4813 | 3.0 | 612 | 0.4437 | 0.8135 | 0.8130 | 0.8129 |
0.4298 | 4.0 | 816 | 0.4182 | 0.8123 | 0.8123 | 0.8123 |
0.3896 | 5.0 | 1020 | 0.4068 | 0.8221 | 0.8219 | 0.8219 |
0.3411 | 6.0 | 1224 | 0.3999 | 0.8209 | 0.8209 | 0.8209 |
0.314 | 7.0 | 1428 | 0.4030 | 0.8307 | 0.8305 | 0.8305 |
0.2982 | 8.0 | 1632 | 0.4084 | 0.8270 | 0.8269 | 0.8269 |
0.279 | 9.0 | 1836 | 0.4129 | 0.8319 | 0.8316 | 0.8315 |
0.2502 | 10.0 | 2040 | 0.4120 | 0.8307 | 0.8306 | 0.8305 |
0.2328 | 11.0 | 2244 | 0.4256 | 0.8368 | 0.8364 | 0.8364 |
0.2168 | 12.0 | 2448 | 0.4480 | 0.8393 | 0.8388 | 0.8388 |
0.2246 | 13.0 | 2652 | 0.4463 | 0.8294 | 0.8292 | 0.8292 |
0.2149 | 14.0 | 2856 | 0.4411 | 0.8307 | 0.8306 | 0.8305 |
0.2077 | 15.0 | 3060 | 0.4452 | 0.8307 | 0.8305 | 0.8305 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.14.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mdosama39/bert-base-multilingual-cased-FakeNews-Dravidian-mBert
Base model
google-bert/bert-base-multilingual-cased