deit-ena24_MD
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the ena24_MD dataset. It achieves the following results on the evaluation set:
- Loss: 1.8782
- Accuracy: 0.5459
- F1: 0.4851
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.1949 | 0.1259 | 100 | 2.2116 | 0.4688 | 0.3895 |
0.5955 | 0.2519 | 200 | 2.6496 | 0.4443 | 0.4240 |
0.6457 | 0.3778 | 300 | 1.8782 | 0.5459 | 0.4851 |
0.5871 | 0.5038 | 400 | 1.9099 | 0.6211 | 0.5460 |
0.5023 | 0.6297 | 500 | 1.9720 | 0.6328 | 0.5493 |
0.4641 | 0.7557 | 600 | 2.2744 | 0.5869 | 0.5344 |
0.7986 | 0.8816 | 700 | 2.3082 | 0.5947 | 0.5330 |
0.2118 | 1.0076 | 800 | 2.1929 | 0.6182 | 0.5418 |
0.3053 | 1.1335 | 900 | 2.2016 | 0.6533 | 0.5738 |
0.2434 | 1.2594 | 1000 | 2.4980 | 0.5908 | 0.5520 |
0.1593 | 1.3854 | 1100 | 2.3773 | 0.6279 | 0.5581 |
0.6254 | 1.5113 | 1200 | 2.4206 | 0.5898 | 0.5226 |
0.3366 | 1.6373 | 1300 | 2.8014 | 0.5762 | 0.5195 |
0.2613 | 1.7632 | 1400 | 2.6497 | 0.6172 | 0.5472 |
0.1136 | 1.8892 | 1500 | 2.4213 | 0.6074 | 0.5433 |
0.1071 | 2.0151 | 1600 | 2.5978 | 0.6436 | 0.5991 |
0.087 | 2.1411 | 1700 | 2.6259 | 0.6562 | 0.6066 |
0.0358 | 2.2670 | 1800 | 3.1009 | 0.5850 | 0.5267 |
0.1166 | 2.3929 | 1900 | 2.7449 | 0.6416 | 0.5866 |
0.0119 | 2.5189 | 2000 | 3.0153 | 0.625 | 0.5515 |
0.0563 | 2.6448 | 2100 | 2.8322 | 0.6387 | 0.5822 |
0.0241 | 2.7708 | 2200 | 2.8272 | 0.6318 | 0.5833 |
0.0844 | 2.8967 | 2300 | 2.8638 | 0.6416 | 0.5756 |
0.1294 | 3.0227 | 2400 | 2.8058 | 0.6484 | 0.5936 |
0.0602 | 3.1486 | 2500 | 2.9597 | 0.6279 | 0.5449 |
0.0445 | 3.2746 | 2600 | 2.7733 | 0.6602 | 0.5929 |
0.0528 | 3.4005 | 2700 | 2.5498 | 0.6826 | 0.6305 |
0.0323 | 3.5264 | 2800 | 2.7229 | 0.6719 | 0.6138 |
0.007 | 3.6524 | 2900 | 2.9141 | 0.6650 | 0.6025 |
0.0012 | 3.7783 | 3000 | 3.1029 | 0.6533 | 0.5968 |
0.0005 | 3.9043 | 3100 | 2.8776 | 0.6221 | 0.5639 |
0.0056 | 4.0302 | 3200 | 3.0144 | 0.6455 | 0.5882 |
0.0033 | 4.1562 | 3300 | 3.0141 | 0.6270 | 0.5702 |
0.0998 | 4.2821 | 3400 | 2.8958 | 0.6553 | 0.6073 |
0.0136 | 4.4081 | 3500 | 3.0230 | 0.6641 | 0.6053 |
0.0002 | 4.5340 | 3600 | 2.8966 | 0.6484 | 0.5750 |
0.0024 | 4.6599 | 3700 | 2.8534 | 0.6650 | 0.6010 |
0.0022 | 4.7859 | 3800 | 2.6686 | 0.6748 | 0.6247 |
0.0408 | 4.9118 | 3900 | 2.6715 | 0.6904 | 0.6327 |
0.1765 | 5.0378 | 4000 | 2.8339 | 0.6621 | 0.5940 |
0.0001 | 5.1637 | 4100 | 2.8891 | 0.6738 | 0.6109 |
0.0008 | 5.2897 | 4200 | 2.8508 | 0.6797 | 0.6183 |
0.0006 | 5.4156 | 4300 | 2.8630 | 0.6787 | 0.6190 |
0.0553 | 5.5416 | 4400 | 2.8210 | 0.6836 | 0.6239 |
0.0 | 5.6675 | 4500 | 2.7912 | 0.6865 | 0.6291 |
0.0 | 5.7935 | 4600 | 2.8061 | 0.6797 | 0.6237 |
0.0085 | 5.9194 | 4700 | 2.6576 | 0.6904 | 0.6332 |
0.0001 | 6.0453 | 4800 | 2.7866 | 0.6748 | 0.6211 |
0.0 | 6.1713 | 4900 | 2.8083 | 0.6738 | 0.6197 |
0.0 | 6.2972 | 5000 | 2.8078 | 0.6777 | 0.6251 |
0.0 | 6.4232 | 5100 | 2.7978 | 0.6797 | 0.6265 |
0.0 | 6.5491 | 5200 | 2.7378 | 0.6963 | 0.6421 |
0.0 | 6.6751 | 5300 | 2.7390 | 0.6973 | 0.6428 |
0.0 | 6.8010 | 5400 | 2.7374 | 0.6963 | 0.6417 |
0.0 | 6.9270 | 5500 | 2.7374 | 0.6963 | 0.6415 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for mbiarreta/deit-ena24_MD
Base model
facebook/deit-base-distilled-patch16-224