deit-ena24
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the ena24 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1233
- Accuracy: 0.9809
- F1: 0.9799
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.396 | 0.1302 | 100 | 1.0114 | 0.7107 | 0.6602 |
1.0428 | 0.2604 | 200 | 0.7400 | 0.7939 | 0.7694 |
0.6952 | 0.3906 | 300 | 0.6129 | 0.8160 | 0.7981 |
0.4429 | 0.5208 | 400 | 0.4991 | 0.8618 | 0.8171 |
0.5441 | 0.6510 | 500 | 0.4392 | 0.8840 | 0.8631 |
0.4533 | 0.7812 | 600 | 0.4120 | 0.8985 | 0.8765 |
0.1213 | 0.9115 | 700 | 0.3953 | 0.8916 | 0.8738 |
0.1151 | 1.0417 | 800 | 0.3146 | 0.9237 | 0.9141 |
0.0953 | 1.1719 | 900 | 0.4656 | 0.9015 | 0.8786 |
0.1876 | 1.3021 | 1000 | 0.3164 | 0.9168 | 0.9023 |
0.2368 | 1.4323 | 1100 | 0.2997 | 0.9305 | 0.9219 |
0.0658 | 1.5625 | 1200 | 0.2324 | 0.9534 | 0.9473 |
0.0566 | 1.6927 | 1300 | 0.3444 | 0.9176 | 0.9077 |
0.2437 | 1.8229 | 1400 | 0.3033 | 0.9435 | 0.9363 |
0.1011 | 1.9531 | 1500 | 0.2740 | 0.9450 | 0.9330 |
0.2987 | 2.0833 | 1600 | 0.2715 | 0.9489 | 0.9419 |
0.0227 | 2.2135 | 1700 | 0.2050 | 0.9603 | 0.9562 |
0.1891 | 2.3438 | 1800 | 0.2055 | 0.9542 | 0.9494 |
0.0325 | 2.4740 | 1900 | 0.2070 | 0.9626 | 0.9604 |
0.0407 | 2.6042 | 2000 | 0.1876 | 0.9611 | 0.9550 |
0.0112 | 2.7344 | 2100 | 0.1702 | 0.9748 | 0.9719 |
0.112 | 2.8646 | 2200 | 0.1695 | 0.9656 | 0.9624 |
0.184 | 2.9948 | 2300 | 0.2088 | 0.9626 | 0.9590 |
0.0464 | 3.125 | 2400 | 0.1805 | 0.9656 | 0.9613 |
0.0794 | 3.2552 | 2500 | 0.2089 | 0.9634 | 0.9608 |
0.0033 | 3.3854 | 2600 | 0.2128 | 0.9603 | 0.9623 |
0.0422 | 3.5156 | 2700 | 0.1378 | 0.9702 | 0.9701 |
0.2038 | 3.6458 | 2800 | 0.1674 | 0.9687 | 0.9685 |
0.0156 | 3.7760 | 2900 | 0.1383 | 0.9756 | 0.9758 |
0.0004 | 3.9062 | 3000 | 0.1544 | 0.9733 | 0.9715 |
0.002 | 4.0365 | 3100 | 0.1552 | 0.9710 | 0.9690 |
0.0405 | 4.1667 | 3200 | 0.1326 | 0.9763 | 0.9751 |
0.0031 | 4.2969 | 3300 | 0.1437 | 0.9756 | 0.9759 |
0.0022 | 4.4271 | 3400 | 0.1316 | 0.9794 | 0.9790 |
0.0019 | 4.5573 | 3500 | 0.1233 | 0.9809 | 0.9799 |
0.0005 | 4.6875 | 3600 | 0.1400 | 0.9771 | 0.9763 |
0.0002 | 4.8177 | 3700 | 0.1339 | 0.9794 | 0.9797 |
0.0304 | 4.9479 | 3800 | 0.1469 | 0.9794 | 0.9795 |
0.0 | 5.0781 | 3900 | 0.1532 | 0.9763 | 0.9760 |
0.0 | 5.2083 | 4000 | 0.1530 | 0.9779 | 0.9771 |
0.0006 | 5.3385 | 4100 | 0.1434 | 0.9771 | 0.9765 |
0.0218 | 5.4688 | 4200 | 0.1468 | 0.9763 | 0.9751 |
0.0043 | 5.5990 | 4300 | 0.1568 | 0.9779 | 0.9763 |
0.0246 | 5.7292 | 4400 | 0.1582 | 0.9771 | 0.9748 |
0.0052 | 5.8594 | 4500 | 0.1489 | 0.9786 | 0.9774 |
0.0003 | 5.9896 | 4600 | 0.1499 | 0.9779 | 0.9775 |
0.0 | 6.1198 | 4700 | 0.1457 | 0.9794 | 0.9786 |
0.0 | 6.25 | 4800 | 0.1437 | 0.9802 | 0.9794 |
0.0048 | 6.3802 | 4900 | 0.1440 | 0.9794 | 0.9782 |
0.0002 | 6.5104 | 5000 | 0.1417 | 0.9802 | 0.9793 |
0.0001 | 6.6406 | 5100 | 0.1427 | 0.9802 | 0.9794 |
0.0 | 6.7708 | 5200 | 0.1422 | 0.9802 | 0.9787 |
0.0002 | 6.9010 | 5300 | 0.1425 | 0.9802 | 0.9787 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for mbiarreta/deit-ena24
Base model
facebook/deit-base-distilled-patch16-224