PhilosophAI
Collection
A study benchmarking major LLM's internalized philosophies
•
6 items
•
Updated
This model is a fine-tuned version of bert-base-uncased on the Standford Encylcopedia of Philosophy dataset, using masked language modeling. It achieves the following results on the evaluation set:
This model was trained with the intention of creating a BERT encoder model for philosophical terminology, and further training on downstream tasks such as school of philosophy text classification.
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0568 | 0.1020 | 500 | 1.8821 |
1.9169 | 0.2039 | 1000 | 1.7939 |
1.873 | 0.3059 | 1500 | 1.7593 |
1.8408 | 0.4078 | 2000 | 1.7280 |
1.8461 | 0.5098 | 2500 | 1.7069 |
1.8108 | 0.6117 | 3000 | 1.6899 |
1.7959 | 0.7137 | 3500 | 1.6748 |
1.7771 | 0.8157 | 4000 | 1.6490 |
1.7705 | 0.9176 | 4500 | 1.6371 |
1.725 | 1.0196 | 5000 | 1.6317 |
1.707 | 1.1215 | 5500 | 1.6279 |
1.7127 | 1.2235 | 6000 | 1.6100 |
1.6806 | 1.3254 | 6500 | 1.5978 |
1.6809 | 1.4274 | 7000 | 1.5920 |
1.6766 | 1.5294 | 7500 | 1.5831 |
1.6598 | 1.6313 | 8000 | 1.5748 |
1.6632 | 1.7333 | 8500 | 1.5646 |
1.6433 | 1.8352 | 9000 | 1.5554 |
1.6317 | 1.9372 | 9500 | 1.5552 |
1.6141 | 2.0392 | 10000 | 1.5404 |
1.6328 | 2.1411 | 10500 | 1.5393 |
1.5981 | 2.2431 | 11000 | 1.5330 |
1.6192 | 2.3450 | 11500 | 1.5260 |
1.6051 | 2.4470 | 12000 | 1.5198 |
1.6218 | 2.5489 | 12500 | 1.5162 |
1.5721 | 2.6509 | 13000 | 1.5079 |
1.5656 | 2.7529 | 13500 | 1.5109 |
1.5642 | 2.8548 | 14000 | 1.5077 |
1.5715 | 2.9568 | 14500 | 1.5106 |