|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
metrics: |
|
- type: mean_reward |
|
value: 262.43 +/- 18.65 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **PPO** Agent playing **LunarLander-v2** |
|
This is a trained model of a **PPO** agent playing **LunarLander-v2** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
TODO: Add your code |
|
|
|
|
|
```python |
|
from stable_baselines3 import PPO |
|
from huggingface_sb3 import load_from_hub |
|
import gym |
|
|
|
# Define model repo_id and filename |
|
repo_id = "mavleo96/rl-bots" # Change this to the actual repo if different |
|
filename = "ppo-LunarLander-v2.zip" |
|
|
|
# Load the model from the Hugging Face Hub |
|
model = load_from_hub(repo_id, filename, model_class=PPO) |
|
|
|
# Create the environment |
|
env = gym.make("LunarLander-v2") |
|
|
|
# Run a few episodes |
|
obs = env.reset() |
|
for _ in range(1000): |
|
action, _states = model.predict(obs, deterministic=True) |
|
obs, reward, done, info = env.step(action) |
|
env.render() |
|
if done: |
|
obs = env.reset() |
|
|
|
env.close() |
|
``` |
|
|