berel_finetuned_on_HB_20_epochs

This model is a fine-tuned version of dicta-il/BEREL on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 8.5450

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
7.1591 0.2153 500 8.6618
8.6589 0.4307 1000 8.7495
8.6554 0.6460 1500 8.6908
8.6627 0.8613 2000 8.7017
8.6223 1.0767 2500 8.6827
8.5857 1.2920 3000 8.6622
8.6139 1.5073 3500 8.7055
8.5881 1.7227 4000 8.6809
8.5148 1.9380 4500 8.6633
8.5885 2.1533 5000 8.6592
8.5679 2.3686 5500 8.6508
8.5388 2.5840 6000 8.6486
8.5463 2.7993 6500 8.5792
8.5194 3.0146 7000 8.6633
8.48 3.2300 7500 8.6601
8.5492 3.4453 8000 8.5711
8.5415 3.6606 8500 8.6319
8.472 3.8760 9000 8.6781
8.4879 4.0913 9500 8.6063
8.4655 4.3066 10000 8.6381
8.425 4.5220 10500 8.6260
8.4945 4.7373 11000 8.6256
8.4558 4.9526 11500 8.6616
8.5101 5.1680 12000 8.6613
8.4096 5.3833 12500 8.6660
8.4309 5.5986 13000 8.6026
8.4496 5.8140 13500 8.6025
9.3234 6.0293 14000 8.7347
8.5097 6.2446 14500 8.6560
8.4168 6.4599 15000 8.5908
8.445 6.6753 15500 8.6343
8.4541 6.8906 16000 8.6516
8.4338 7.1059 16500 8.6521
8.4299 7.3213 17000 8.6038
8.457 7.5366 17500 8.6108
8.4626 7.7519 18000 8.6150
8.407 7.9673 18500 8.6590
8.4536 8.1826 19000 8.5758
8.4815 8.3979 19500 8.5993
8.4254 8.6133 20000 8.6394
8.4508 8.8286 20500 8.6176
8.4415 9.0439 21000 8.6250
8.4393 9.2593 21500 8.6635
8.4358 9.4746 22000 8.5987
8.4646 9.6899 22500 8.6133
8.4111 9.9053 23000 8.6195
8.3735 10.1206 23500 8.6907
8.443 10.3359 24000 8.6044
8.376 10.5512 24500 8.6409
8.4031 10.7666 25000 8.5897
8.4022 10.9819 25500 8.6592
8.3487 11.1972 26000 8.6485
8.3594 11.4126 26500 8.5704
8.3992 11.6279 27000 8.6308
8.448 11.8432 27500 8.5839
8.3923 12.0586 28000 8.6194
8.4294 12.2739 28500 8.6220
8.367 12.4892 29000 8.6278
8.372 12.7046 29500 8.6453
8.3982 12.9199 30000 8.5927
8.3998 13.1352 30500 8.6343
8.4504 13.3506 31000 8.6210
8.3868 13.5659 31500 8.6174
8.421 13.7812 32000 8.5785
8.3744 13.9966 32500 8.6087
8.3772 14.2119 33000 8.6390
8.3912 14.4272 33500 8.6107
8.373 14.6425 34000 8.6597
8.3741 14.8579 34500 8.5642
8.346 15.0732 35000 8.6119
8.4013 15.2885 35500 8.5845
8.3922 15.5039 36000 nan
8.367 15.7192 36500 8.5948
8.3847 15.9345 37000 8.5956
8.3212 16.1499 37500 8.6331
8.3453 16.3652 38000 8.5590
8.3495 16.5805 38500 8.5951
8.3877 16.7959 39000 8.6073
8.3976 17.0112 39500 8.5885
8.3509 17.2265 40000 8.6037
8.386 17.4419 40500 8.6091
8.3475 17.6572 41000 8.6172
8.3148 17.8725 41500 8.6449
8.3426 18.0879 42000 8.6365
8.3148 18.3032 42500 8.6147
8.3736 18.5185 43000 8.5603
8.3439 18.7339 43500 8.5605
8.3471 18.9492 44000 8.5325
8.3408 19.1645 44500 8.5323
8.3804 19.3798 45000 8.5840
8.3231 19.5952 45500 8.6323
8.3746 19.8105 46000 8.5450

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
184M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for martijn75/berel_finetuned_on_HB_20_epochs

Base model

dicta-il/BEREL
Finetuned
(17)
this model