marksusol's picture
End of training
4d33855 verified
|
raw
history blame
2.33 kB
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - recall
  - precision
model-index:
  - name: deberta-v3-small-finetuned-ner-2048
    results: []

deberta-v3-small-finetuned-ner-2048

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0036
  • Recall: 0.9920
  • Precision: 0.9866
  • Fbeta Score: 0.9918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Recall Precision Fbeta Score
0.0085 1.0 3186 0.0058 0.9786 0.9693 0.9782
0.0032 2.0 6373 0.0036 0.9869 0.9764 0.9865
0.004 3.0 9559 0.0037 0.9791 0.9892 0.9795
0.0014 4.0 12746 0.0035 0.9908 0.9817 0.9905
0.0019 5.0 15932 0.0038 0.9903 0.9806 0.9899
0.0022 6.0 19119 0.0032 0.9929 0.9861 0.9927
0.0005 7.0 22305 0.0031 0.9906 0.9894 0.9905
0.0003 8.0 25492 0.0033 0.9915 0.9855 0.9913
0.0001 9.0 28678 0.0036 0.9920 0.9866 0.9918

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2