mcdse-2b-v1

mcdse-2b-v1 is an experimental model designed for multilingual visual document retrieval.

This model allows you to embed page/slide screenshots and query them using natural language. Whether it's tables, graphs, charts, schemas, images, or text, mcdse-2b-v1 encodes everything into a single embedding vector, eliminating the need for traditional OCR, document layout analysis, reading order detection, chunking, table/formula extraction...

  • Understands ๐Ÿ‡ฎ๐Ÿ‡น Italian, ๐Ÿ‡ช๐Ÿ‡ธ Spanish, ๐Ÿ‡ฌ๐Ÿ‡ง English, ๐Ÿ‡ซ๐Ÿ‡ท French and ๐Ÿ‡ฉ๐Ÿ‡ช German

  • Matryoshka Representation Learning: shrink embeddings from 1536 to 256 dimensions while maintaining 95% of the quality. A 6x reduction with negligible impact on performance!

  • Top-tier Binarization: 768-dimensional binary vectors retain 99% retrieval quality of the original 1536-dimensional float vectors. With binary vectors, you can encode 100 million multilingual pages in just 10GB.

  • Fast vLLM inference: run inference on vLLM and efficiently serve embeddings at scale, production ready.

For more information about this model or how it was trained, visit the announcement blogpost.

Usage

Initialize model and processor

from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
import math

model = Qwen2VLForConditionalGeneration.from_pretrained(
    'marco/mcdse-2b-v1',
    attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16,
    device_map="cuda:0"
).eval()

min_pixels = 1 * 28 * 28
max_pixels = 960 * 28 * 28

processor = AutoProcessor.from_pretrained(
    'marco/mcdse-2b-v1',
    min_pixels=min_pixels,
    max_pixels=max_pixels
)

model.padding_side = "left"
processor.tokenizer.padding_side = "left"

document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"

query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"

Encode queries

def encode_queries(queries: list[str], dimension: int):
    dummy_image = Image.new('RGB', (56, 56))
    inputs = processor(
        text=[query_prompt % x for x in queries],
        images=[dummy_image for _ in queries],
        videos=None,
        padding='longest',
        return_tensors='pt'
    ).to('cuda:0')

    cache_position = torch.arange(0, len(queries))
    inputs = model.prepare_inputs_for_generation(
        **inputs, cache_position=cache_position, use_cache=False)

    with torch.no_grad():
        output = self.model(
            **inputs,
            return_dict=True,
            output_hidden_states=True
        )
    
    embeddings = output.hidden_states[-1][:, -1]
    return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)

Encode documents

def round_by_factor(number: float, factor: int) -> int:
    return round(number / factor) * factor

def ceil_by_factor(number: float, factor: int) -> int:
    return math.ceil(number / factor) * factor

def floor_by_factor(number: float, factor: int) -> int:
    return math.floor(number / factor) * factor

def smart_resize(height: int, width: int) -> tuple[int, int]:
        h_bar = max(28, round_by_factor(height, 28))
        w_bar = max(28, round_by_factor(width, 28))
        if h_bar * w_bar > max_pixels:
            beta = math.sqrt((height * width) / max_pixels)
            h_bar = floor_by_factor(height / beta, 28)
            w_bar = floor_by_factor(width / beta, 28)
        elif h_bar * w_bar < min_pixels:
            beta = math.sqrt(min_pixels / (height * width))
            h_bar = ceil_by_factor(height * beta, 28)
            w_bar = ceil_by_factor(width * beta, 28)
        return h_bar, w_bar

def resize(image: Image.Image):
    new_size = smart_resize(image.height, image.width)
    return image.resize(new_size)

def encode_documents(documents: list[Image.Image], dimension: int):
    inputs = processor(
        text=[document_prompt] * len(documents),
        images=[resize(x) for x in documents],
        videos=None,
        padding='longest',
        return_tensors='pt'
    ).to('cuda:0')

    cache_position = torch.arange(0, len(queries))
    inputs = model.prepare_inputs_for_generation(
        **inputs, cache_position=cache_position, use_cache=False)

    with torch.no_grad():
        output = self.model(
            **inputs,
            return_dict=True,
            output_hidden_states=True
        )
    
    embeddings = output.hidden_states[-1][:, -1]
    return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)

vLLM

This model supports vLLM, visit the announcement blogpost to know more.

Results

Given the scarcity of publicly available datasets for multilingual document image retrieval, the model has been evaluated using a custom-built dataset. This eval dataset was specifically designed to benchmark the model's performance across various languages.

NDCG@5 (float)

Average English Italian Spanish French German
1536 dimensions
dse-qwen2-2b-mrl-v1 79.5 79.2 80.2 77.9 80.6 79.6
mcdse-2b-v1 82.2 80.8 81.2 80.7 84.5 83.8
+3.28% +1.98% +1.23% +3.47% +4.62% +5.01%
1024 dimensions
dse-qwen2-2b-mrl-v1 78.3 78.8 78.5 76.5 80 77.5
mcdse-2b-v1 81.7 80 80.2 80.1 84 84.3
+4.23% +1.75% +2.12% +4.49% +4.76% +8.07%
768 dimensions
dse-qwen2-2b-mrl-v1 77.8 78.4 78.3 75.6 80.8 75.9
mcdse-2b-v1 81.1 79.6 79.9 79.2 83.3 83.3
+4.02% +1.51% +2.00% +4.55% +3.00% +8.88%
512 dimensions
dse-qwen2-2b-mrl-v1 76.2 77.6 75.9 73.1 79.2 75.2
mcdse-2b-v1 79.3 78.5 79.1 75.8 81.4 81.7
+3.91% +1.15% +4.05% +3.56% +2.70% +7.96%
384 dimensions
dse-qwen2-2b-mrl-v1 75.7 76.2 75.5 74.6 78.4 74
mcdse-2b-v1 78.8 77.5 78.5 76.1 80.4 81.4
+3.86% +1.68% +3.82% +1.97% +2.49% +9.09%
256 dimensions
dse-qwen2-2b-mrl-v1 73.5 74.5 73.6 70.6 74.8 73.8
mcdse-2b-v1 78.1 78.5 77.6 76.2 80.1 77.9
+5.89% +5.10% +5.15% +7.35% +6.62% +5.26%

NDCG@5 (binary)

Average English Italian Spanish French German
1536 dimensions
dse-qwen2-2b-mrl-v1 75.0 75.8 75.4 72.4 78.1 73.2
mcdse-2b-v1 80.6 79.5 76.9 81.9 83.7 80.8
+6.93% +4.65% +1.95% +11.60% +6.69% +9.41%
1024 dimensions
dse-qwen2-2b-mrl-v1 72.2 74.8 71 70.8 74.6 69.6
mcdse-2b-v1 79.3 78.4 75.4 80.8 82.6 79.5
+9.05% +4.59% +5.84% +12.38% +9.69% +12.45%
768 dimensions
dse-qwen2-2b-mrl-v1 70.1 71.7 69.3 69.8 73.7 65.9
mcdse-2b-v1 78.8 77.1 75.4 80 83 78.5
+11.07% +7.00% +8.09% +12.75% +11.20% +16.05%
512 dimensions
dse-qwen2-2b-mrl-v1 66.5 70 65.4 63.7 70.2 63
mcdse-2b-v1 76.6 74.8 74.2 77.7 80.9 75.3
+13.21% +6.42% +11.86% +18.02% +13.23% +16.33%
384 dimensions
dse-qwen2-2b-mrl-v1 61.1 62.7 58.5 58.6 65.1 60.8
mcdse-2b-v1 74.3 74.5 71.4 77.2 75.2 73
+17.67% +15.84% +18.07% +24.09% +13.43% +16.71%
256 dimensions
dse-qwen2-2b-mrl-v1 54.3 59 56.5 53.6 53 49.6
mcdse-2b-v1 70.9 72.6 66.4 73.5 72.6 69.2
+23.31% +18.73% +14.91% +27.07% +27.00% +28.32%
Downloads last month
9,491
Safetensors
Model size
2.21B params
Tensor type
BF16
ยท
Inference API
Unable to determine this model's library. Check the docs .

Model tree for marco/mcdse-2b-v1

Base model

Qwen/Qwen2-VL-2B
Finetuned
(3)
this model