distilbert-base-multilingual-cased-2-contract-sections-classification-v4-10
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2129
- Accuracy Evaluate: 0.95
- Precision Evaluate: 0.9426
- Recall Evaluate: 0.9573
- F1 Evaluate: 0.9484
- Accuracy Sklearn: 0.95
- Precision Sklearn: 0.9524
- Recall Sklearn: 0.95
- F1 Sklearn: 0.9503
- Acuracia Rotulo Objeto: 0.9711
- Acuracia Rotulo Obrigacoes: 0.8956
- Acuracia Rotulo Valor: 0.9513
- Acuracia Rotulo Vigencia: 0.9843
- Acuracia Rotulo Rescisao: 0.9086
- Acuracia Rotulo Foro: 1.0
- Acuracia Rotulo Reajuste: 0.9964
- Acuracia Rotulo Fiscalizacao: 0.9180
- Acuracia Rotulo Publicacao: 1.0
- Acuracia Rotulo Pagamento: 0.9167
- Acuracia Rotulo Casos Omissos: 0.9212
- Acuracia Rotulo Sancoes: 0.9817
- Acuracia Rotulo Dotacao Orcamentaria: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.9189 | 1.0 | 1000 | 1.7267 | 0.668 | 0.7970 | 0.6344 | 0.6368 | 0.668 | 0.7560 | 0.668 | 0.6389 | 0.8967 | 0.8232 | 0.8023 | 0.6509 | 0.6842 | 0.8192 | 0.8149 | 0.1420 | 0.8670 | 0.0833 | 0.8916 | 0.4587 | 0.3132 |
0.9396 | 2.0 | 2000 | 0.8640 | 0.8688 | 0.8805 | 0.8778 | 0.8752 | 0.8688 | 0.8787 | 0.8688 | 0.8693 | 0.9773 | 0.7795 | 0.9427 | 0.7533 | 0.9003 | 0.9346 | 0.8932 | 0.8076 | 0.7635 | 0.8080 | 0.9163 | 0.9358 | 1.0 |
0.4896 | 3.0 | 3000 | 0.5016 | 0.917 | 0.9149 | 0.9287 | 0.9189 | 0.917 | 0.9244 | 0.917 | 0.9176 | 0.9793 | 0.7811 | 0.9370 | 0.9633 | 0.9086 | 0.9538 | 0.9466 | 0.8991 | 0.9704 | 0.8732 | 0.9163 | 0.9450 | 1.0 |
0.2993 | 4.0 | 4000 | 0.3596 | 0.9247 | 0.9222 | 0.9376 | 0.9271 | 0.9247 | 0.9312 | 0.9247 | 0.9252 | 0.9752 | 0.7879 | 0.9427 | 0.9790 | 0.9086 | 0.9615 | 0.9573 | 0.9148 | 0.9901 | 0.8877 | 0.9212 | 0.9633 | 1.0 |
0.2033 | 5.0 | 5000 | 0.2866 | 0.9363 | 0.9322 | 0.9479 | 0.9379 | 0.9363 | 0.9409 | 0.9363 | 0.9367 | 0.9711 | 0.8266 | 0.9513 | 0.9843 | 0.9086 | 0.9962 | 0.9715 | 0.9148 | 0.9901 | 0.9058 | 0.9212 | 0.9817 | 1.0 |
0.1484 | 6.0 | 6000 | 0.2518 | 0.9393 | 0.9343 | 0.9513 | 0.9406 | 0.9393 | 0.9437 | 0.9393 | 0.9397 | 0.9690 | 0.8300 | 0.9456 | 0.9843 | 0.9086 | 0.9962 | 0.9964 | 0.9180 | 1.0 | 0.9167 | 0.9212 | 0.9817 | 1.0 |
0.1321 | 7.0 | 7000 | 0.2310 | 0.9477 | 0.9410 | 0.9560 | 0.9469 | 0.9477 | 0.9503 | 0.9477 | 0.9481 | 0.9711 | 0.8822 | 0.9484 | 0.9843 | 0.9086 | 1.0 | 0.9964 | 0.9180 | 1.0 | 0.9167 | 0.9212 | 0.9817 | 1.0 |
0.1128 | 8.0 | 8000 | 0.2339 | 0.944 | 0.9379 | 0.9542 | 0.9442 | 0.944 | 0.9474 | 0.944 | 0.9443 | 0.9731 | 0.8535 | 0.9484 | 0.9843 | 0.9086 | 1.0 | 0.9964 | 0.9211 | 1.0 | 0.9167 | 0.9212 | 0.9817 | 1.0 |
0.1018 | 9.0 | 9000 | 0.2173 | 0.949 | 0.9417 | 0.9568 | 0.9476 | 0.949 | 0.9516 | 0.949 | 0.9493 | 0.9731 | 0.8872 | 0.9513 | 0.9843 | 0.9086 | 1.0 | 0.9964 | 0.9180 | 1.0 | 0.9167 | 0.9212 | 0.9817 | 1.0 |
0.1003 | 10.0 | 10000 | 0.2129 | 0.95 | 0.9426 | 0.9573 | 0.9484 | 0.95 | 0.9524 | 0.95 | 0.9503 | 0.9711 | 0.8956 | 0.9513 | 0.9843 | 0.9086 | 1.0 | 0.9964 | 0.9180 | 1.0 | 0.9167 | 0.9212 | 0.9817 | 1.0 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support