ModernBERT-base-2-contract-sections-classification-v4-50-512
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3958
- Accuracy Evaluate: 0.9377
- Precision Evaluate: 0.9454
- Recall Evaluate: 0.9361
- F1 Evaluate: 0.9397
- Accuracy Sklearn: 0.9377
- Precision Sklearn: 0.9396
- Recall Sklearn: 0.9377
- F1 Sklearn: 0.9376
- Acuracia Rotulo Objeto: 0.9814
- Acuracia Rotulo Obrigacoes: 0.9630
- Acuracia Rotulo Valor: 0.9026
- Acuracia Rotulo Vigencia: 0.9711
- Acuracia Rotulo Rescisao: 0.9391
- Acuracia Rotulo Foro: 0.9962
- Acuracia Rotulo Reajuste: 0.8932
- Acuracia Rotulo Fiscalizacao: 0.8297
- Acuracia Rotulo Publicacao: 0.9409
- Acuracia Rotulo Pagamento: 0.8877
- Acuracia Rotulo Casos Omissos: 0.9163
- Acuracia Rotulo Sancoes: 0.9541
- Acuracia Rotulo Dotacao Orcamentaria: 0.9945
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5007 | 1.0 | 1000 | 0.8716 | 0.744 | 0.8071 | 0.7604 | 0.7666 | 0.744 | 0.7924 | 0.744 | 0.7473 | 0.9153 | 0.6835 | 0.4527 | 0.6299 | 0.8310 | 0.8808 | 0.7402 | 0.7413 | 0.9064 | 0.5942 | 0.8227 | 0.8899 | 0.7967 |
0.2031 | 2.0 | 2000 | 0.5793 | 0.8415 | 0.8590 | 0.8558 | 0.8516 | 0.8415 | 0.8525 | 0.8415 | 0.8398 | 0.9298 | 0.7879 | 0.5788 | 0.8504 | 0.9030 | 0.9885 | 0.8648 | 0.6625 | 0.9360 | 0.8804 | 0.8867 | 0.8899 | 0.9670 |
0.1306 | 3.0 | 3000 | 0.4607 | 0.8705 | 0.8683 | 0.8866 | 0.8735 | 0.8705 | 0.8762 | 0.8705 | 0.8708 | 0.8967 | 0.8199 | 0.7794 | 0.8898 | 0.7812 | 0.9962 | 0.9110 | 0.7855 | 0.9655 | 0.8877 | 0.9163 | 0.9358 | 0.9615 |
0.1043 | 4.0 | 4000 | 0.4157 | 0.896 | 0.9015 | 0.9058 | 0.9013 | 0.896 | 0.9001 | 0.896 | 0.8955 | 0.9607 | 0.8232 | 0.7536 | 0.9790 | 0.9252 | 0.9846 | 0.8790 | 0.7950 | 0.9064 | 0.9130 | 0.9064 | 0.9541 | 0.9945 |
0.0779 | 5.0 | 5000 | 0.4192 | 0.9008 | 0.9004 | 0.9124 | 0.9047 | 0.9008 | 0.9042 | 0.9008 | 0.9009 | 0.9731 | 0.7946 | 0.8711 | 0.9291 | 0.9252 | 0.9962 | 0.8932 | 0.7886 | 0.9557 | 0.8949 | 0.9113 | 0.9450 | 0.9835 |
0.0483 | 6.0 | 6000 | 0.5271 | 0.8992 | 0.9081 | 0.9149 | 0.9088 | 0.8992 | 0.9068 | 0.8992 | 0.8990 | 0.9793 | 0.7290 | 0.8567 | 0.9659 | 0.9252 | 0.9923 | 0.8932 | 0.8297 | 0.9951 | 0.9058 | 0.9064 | 0.9266 | 0.9890 |
0.0508 | 7.0 | 7000 | 0.4042 | 0.9087 | 0.9079 | 0.9202 | 0.9116 | 0.9087 | 0.9139 | 0.9087 | 0.9093 | 0.9731 | 0.8064 | 0.8596 | 0.9711 | 0.9169 | 0.9808 | 0.9004 | 0.8328 | 0.9606 | 0.8986 | 0.9064 | 0.9725 | 0.9835 |
0.0389 | 8.0 | 8000 | 0.3789 | 0.913 | 0.9114 | 0.9241 | 0.9154 | 0.913 | 0.9176 | 0.913 | 0.9133 | 0.9752 | 0.8131 | 0.8768 | 0.9738 | 0.9169 | 0.9923 | 0.8897 | 0.8328 | 0.9606 | 0.9094 | 0.9163 | 0.9725 | 0.9835 |
0.0251 | 9.0 | 9000 | 0.3430 | 0.929 | 0.9384 | 0.9312 | 0.9338 | 0.929 | 0.9311 | 0.929 | 0.9289 | 0.9855 | 0.9158 | 0.8768 | 0.9738 | 0.9335 | 0.9923 | 0.8790 | 0.8423 | 0.9754 | 0.8877 | 0.8966 | 0.9633 | 0.9835 |
0.0226 | 10.0 | 10000 | 0.4588 | 0.9073 | 0.9126 | 0.9215 | 0.9128 | 0.9073 | 0.9163 | 0.9073 | 0.9078 | 0.9917 | 0.7609 | 0.8711 | 0.9711 | 0.9197 | 0.9923 | 0.8648 | 0.8612 | 0.9655 | 0.9130 | 0.8916 | 0.9817 | 0.9945 |
0.021 | 11.0 | 11000 | 0.3318 | 0.9325 | 0.9357 | 0.9298 | 0.9316 | 0.9325 | 0.9341 | 0.9325 | 0.9322 | 0.9855 | 0.9529 | 0.8854 | 0.9711 | 0.9418 | 0.9923 | 0.8897 | 0.8328 | 0.9015 | 0.8949 | 0.9015 | 0.9541 | 0.9835 |
0.0138 | 12.0 | 12000 | 0.3269 | 0.939 | 0.9389 | 0.9399 | 0.9384 | 0.939 | 0.9403 | 0.939 | 0.9388 | 0.9835 | 0.9529 | 0.8911 | 0.9685 | 0.9446 | 0.9923 | 0.8897 | 0.8486 | 0.9803 | 0.8913 | 0.9113 | 0.9817 | 0.9835 |
0.0144 | 13.0 | 13000 | 0.3691 | 0.9327 | 0.9434 | 0.9340 | 0.9377 | 0.9327 | 0.9359 | 0.9327 | 0.9331 | 0.9897 | 0.9293 | 0.8596 | 0.9633 | 0.9391 | 0.9962 | 0.8897 | 0.8644 | 0.9803 | 0.8877 | 0.9113 | 0.9541 | 0.9780 |
0.0062 | 14.0 | 14000 | 0.3847 | 0.9287 | 0.9412 | 0.9271 | 0.9323 | 0.9287 | 0.9334 | 0.9287 | 0.9291 | 0.9897 | 0.9495 | 0.8911 | 0.9580 | 0.9197 | 0.9962 | 0.8754 | 0.8233 | 0.9113 | 0.8949 | 0.9015 | 0.9633 | 0.9780 |
0.0051 | 15.0 | 15000 | 0.3604 | 0.9335 | 0.9426 | 0.9313 | 0.9355 | 0.9335 | 0.9357 | 0.9335 | 0.9332 | 0.9835 | 0.9613 | 0.8797 | 0.9764 | 0.9363 | 0.9962 | 0.8826 | 0.8328 | 0.9064 | 0.8986 | 0.8867 | 0.9725 | 0.9945 |
0.0059 | 16.0 | 16000 | 0.3538 | 0.935 | 0.9421 | 0.9345 | 0.9372 | 0.935 | 0.9366 | 0.935 | 0.9347 | 0.9814 | 0.9545 | 0.8797 | 0.9711 | 0.9446 | 0.9962 | 0.9004 | 0.8202 | 0.9360 | 0.8949 | 0.9113 | 0.9633 | 0.9945 |
0.0047 | 17.0 | 17000 | 0.3679 | 0.9323 | 0.9331 | 0.9310 | 0.9304 | 0.9323 | 0.9343 | 0.9323 | 0.9319 | 0.9793 | 0.9646 | 0.8911 | 0.9711 | 0.9252 | 1.0 | 0.8790 | 0.8076 | 0.9163 | 0.8913 | 0.9163 | 0.9725 | 0.9890 |
0.0045 | 18.0 | 18000 | 0.3664 | 0.9363 | 0.9391 | 0.9381 | 0.9372 | 0.9363 | 0.9377 | 0.9363 | 0.9358 | 0.9835 | 0.9579 | 0.8682 | 0.9685 | 0.9335 | 1.0 | 0.8968 | 0.8139 | 0.9951 | 0.8949 | 0.9064 | 0.9817 | 0.9945 |
0.004 | 19.0 | 19000 | 0.3635 | 0.937 | 0.9382 | 0.9363 | 0.9359 | 0.937 | 0.9392 | 0.937 | 0.9369 | 0.9897 | 0.9512 | 0.9169 | 0.9659 | 0.9335 | 0.9962 | 0.8754 | 0.8423 | 0.9458 | 0.8804 | 0.9163 | 0.9633 | 0.9945 |
0.0024 | 20.0 | 20000 | 0.3885 | 0.9327 | 0.9427 | 0.9309 | 0.9353 | 0.9327 | 0.9363 | 0.9327 | 0.9329 | 0.9876 | 0.9461 | 0.8682 | 0.9738 | 0.9391 | 0.9962 | 0.9075 | 0.8549 | 0.9064 | 0.8768 | 0.8966 | 0.9541 | 0.9945 |
0.0017 | 21.0 | 21000 | 0.3883 | 0.936 | 0.9399 | 0.9341 | 0.9351 | 0.936 | 0.9391 | 0.936 | 0.9360 | 0.9876 | 0.9613 | 0.9169 | 0.9685 | 0.9224 | 0.9962 | 0.8968 | 0.8202 | 0.9212 | 0.8841 | 0.9163 | 0.9633 | 0.9890 |
0.0016 | 22.0 | 22000 | 0.3651 | 0.9355 | 0.9357 | 0.9337 | 0.9336 | 0.9355 | 0.9373 | 0.9355 | 0.9354 | 0.9814 | 0.9495 | 0.9083 | 0.9738 | 0.9335 | 0.9962 | 0.8897 | 0.8517 | 0.9212 | 0.8877 | 0.8966 | 0.9541 | 0.9945 |
0.0027 | 23.0 | 23000 | 0.3749 | 0.9357 | 0.9397 | 0.9344 | 0.9359 | 0.9357 | 0.9377 | 0.9357 | 0.9358 | 0.9814 | 0.9512 | 0.8883 | 0.9711 | 0.9363 | 0.9962 | 0.8932 | 0.8612 | 0.9212 | 0.8877 | 0.9113 | 0.9541 | 0.9945 |
0.0044 | 24.0 | 24000 | 0.3880 | 0.9335 | 0.9380 | 0.9325 | 0.9341 | 0.9335 | 0.9353 | 0.9335 | 0.9333 | 0.9814 | 0.9596 | 0.8825 | 0.9738 | 0.9197 | 0.9923 | 0.8968 | 0.8328 | 0.9261 | 0.8841 | 0.9163 | 0.9633 | 0.9945 |
0.0028 | 25.0 | 25000 | 0.3880 | 0.935 | 0.9398 | 0.9332 | 0.9352 | 0.935 | 0.9369 | 0.935 | 0.9348 | 0.9835 | 0.9579 | 0.8911 | 0.9711 | 0.9418 | 0.9962 | 0.8897 | 0.8360 | 0.9212 | 0.8841 | 0.9064 | 0.9633 | 0.9890 |
0.0024 | 26.0 | 26000 | 0.3963 | 0.9333 | 0.9366 | 0.9330 | 0.9332 | 0.9333 | 0.9362 | 0.9333 | 0.9334 | 0.9897 | 0.9343 | 0.9083 | 0.9580 | 0.9391 | 1.0 | 0.8826 | 0.8454 | 0.9360 | 0.8804 | 0.9015 | 0.9541 | 1.0 |
0.0042 | 27.0 | 27000 | 0.4256 | 0.9315 | 0.9319 | 0.9300 | 0.9281 | 0.9315 | 0.9362 | 0.9315 | 0.9318 | 0.9793 | 0.9529 | 0.9284 | 0.9711 | 0.9197 | 0.9962 | 0.8612 | 0.8076 | 0.9261 | 0.8877 | 0.9064 | 0.9541 | 1.0 |
0.0032 | 28.0 | 28000 | 0.3806 | 0.9363 | 0.9407 | 0.9345 | 0.9366 | 0.9363 | 0.9379 | 0.9363 | 0.9361 | 0.9835 | 0.9444 | 0.8968 | 0.9790 | 0.9501 | 0.9962 | 0.9004 | 0.8486 | 0.9360 | 0.8768 | 0.8916 | 0.9450 | 1.0 |
0.0021 | 29.0 | 29000 | 0.3779 | 0.9395 | 0.9475 | 0.9375 | 0.9414 | 0.9395 | 0.9412 | 0.9395 | 0.9393 | 0.9793 | 0.9596 | 0.9083 | 0.9711 | 0.9612 | 0.9962 | 0.8897 | 0.8328 | 0.9458 | 0.8877 | 0.9113 | 0.9450 | 1.0 |
0.002 | 30.0 | 30000 | 0.3918 | 0.9333 | 0.9394 | 0.9315 | 0.9339 | 0.9333 | 0.9356 | 0.9333 | 0.9330 | 0.9814 | 0.9697 | 0.8739 | 0.9711 | 0.9252 | 0.9962 | 0.9004 | 0.8170 | 0.9212 | 0.8841 | 0.9113 | 0.9633 | 0.9945 |
0.0022 | 31.0 | 31000 | 0.3868 | 0.9373 | 0.9436 | 0.9349 | 0.9382 | 0.9373 | 0.9392 | 0.9373 | 0.9372 | 0.9855 | 0.9613 | 0.9054 | 0.9711 | 0.9280 | 0.9962 | 0.8932 | 0.8423 | 0.9409 | 0.8841 | 0.9064 | 0.9450 | 0.9945 |
0.0017 | 32.0 | 32000 | 0.4050 | 0.9325 | 0.9417 | 0.9309 | 0.9351 | 0.9325 | 0.9344 | 0.9325 | 0.9322 | 0.9814 | 0.9545 | 0.8854 | 0.9738 | 0.9363 | 0.9962 | 0.8861 | 0.8233 | 0.9261 | 0.8877 | 0.8966 | 0.9541 | 1.0 |
0.001 | 33.0 | 33000 | 0.3841 | 0.9375 | 0.9461 | 0.9346 | 0.9393 | 0.9375 | 0.9393 | 0.9375 | 0.9373 | 0.9835 | 0.9613 | 0.9054 | 0.9738 | 0.9446 | 0.9962 | 0.8932 | 0.8360 | 0.9212 | 0.8841 | 0.9113 | 0.9450 | 0.9945 |
0.0019 | 34.0 | 34000 | 0.4004 | 0.9337 | 0.9401 | 0.9312 | 0.9341 | 0.9337 | 0.9362 | 0.9337 | 0.9335 | 0.9835 | 0.9596 | 0.8997 | 0.9711 | 0.9363 | 0.9962 | 0.8932 | 0.8139 | 0.9212 | 0.8841 | 0.9015 | 0.9450 | 1.0 |
0.0027 | 35.0 | 35000 | 0.3941 | 0.935 | 0.9407 | 0.9329 | 0.9353 | 0.935 | 0.9374 | 0.935 | 0.9349 | 0.9814 | 0.9562 | 0.9140 | 0.9711 | 0.9307 | 0.9962 | 0.8897 | 0.8328 | 0.9212 | 0.8841 | 0.9015 | 0.9541 | 0.9945 |
0.0 | 36.0 | 36000 | 0.3833 | 0.9395 | 0.9470 | 0.9373 | 0.9411 | 0.9395 | 0.9411 | 0.9395 | 0.9393 | 0.9814 | 0.9630 | 0.9083 | 0.9685 | 0.9501 | 0.9962 | 0.9146 | 0.8265 | 0.9409 | 0.8841 | 0.9113 | 0.9450 | 0.9945 |
0.001 | 37.0 | 37000 | 0.3958 | 0.9357 | 0.9441 | 0.9341 | 0.9379 | 0.9357 | 0.9376 | 0.9357 | 0.9355 | 0.9855 | 0.9613 | 0.8883 | 0.9711 | 0.9363 | 0.9962 | 0.9004 | 0.8297 | 0.9212 | 0.8841 | 0.9064 | 0.9633 | 1.0 |
0.0012 | 38.0 | 38000 | 0.3790 | 0.938 | 0.9421 | 0.9347 | 0.9372 | 0.938 | 0.9398 | 0.938 | 0.9378 | 0.9876 | 0.9613 | 0.9112 | 0.9685 | 0.9446 | 0.9962 | 0.9004 | 0.8391 | 0.9163 | 0.8804 | 0.9064 | 0.9450 | 0.9945 |
0.0008 | 39.0 | 39000 | 0.3849 | 0.9363 | 0.9431 | 0.9348 | 0.9379 | 0.9363 | 0.9378 | 0.9363 | 0.9360 | 0.9835 | 0.9596 | 0.8968 | 0.9711 | 0.9363 | 0.9962 | 0.8932 | 0.8360 | 0.9409 | 0.8841 | 0.8966 | 0.9633 | 0.9945 |
0.0023 | 40.0 | 40000 | 0.3834 | 0.9383 | 0.9418 | 0.9364 | 0.9378 | 0.9383 | 0.9399 | 0.9383 | 0.9380 | 0.9855 | 0.9646 | 0.8911 | 0.9711 | 0.9418 | 0.9962 | 0.9181 | 0.8265 | 0.9212 | 0.8877 | 0.9113 | 0.9633 | 0.9945 |
0.0013 | 41.0 | 41000 | 0.3837 | 0.9387 | 0.9464 | 0.9364 | 0.9404 | 0.9387 | 0.9404 | 0.9387 | 0.9386 | 0.9835 | 0.9630 | 0.9054 | 0.9685 | 0.9474 | 0.9962 | 0.9039 | 0.8297 | 0.9409 | 0.8841 | 0.9113 | 0.9450 | 0.9945 |
0.0007 | 42.0 | 42000 | 0.3959 | 0.9353 | 0.9414 | 0.9341 | 0.9364 | 0.9353 | 0.9372 | 0.9353 | 0.9350 | 0.9814 | 0.9630 | 0.8854 | 0.9711 | 0.9335 | 0.9962 | 0.9004 | 0.8297 | 0.9212 | 0.8877 | 0.9064 | 0.9725 | 0.9945 |
0.0006 | 43.0 | 43000 | 0.3876 | 0.938 | 0.9454 | 0.9362 | 0.9397 | 0.938 | 0.9398 | 0.938 | 0.9378 | 0.9835 | 0.9630 | 0.9026 | 0.9711 | 0.9418 | 0.9962 | 0.8968 | 0.8265 | 0.9409 | 0.8877 | 0.9113 | 0.9541 | 0.9945 |
0.0016 | 44.0 | 44000 | 0.3886 | 0.936 | 0.9432 | 0.9347 | 0.9378 | 0.936 | 0.9378 | 0.936 | 0.9358 | 0.9814 | 0.9613 | 0.8997 | 0.9711 | 0.9335 | 0.9962 | 0.8932 | 0.8328 | 0.9212 | 0.8877 | 0.9064 | 0.9725 | 0.9945 |
0.0016 | 45.0 | 45000 | 0.3989 | 0.9375 | 0.9457 | 0.9354 | 0.9394 | 0.9375 | 0.9395 | 0.9375 | 0.9373 | 0.9855 | 0.9613 | 0.9112 | 0.9685 | 0.9391 | 0.9962 | 0.9004 | 0.8170 | 0.9409 | 0.8841 | 0.9113 | 0.9450 | 1.0 |
0.0 | 46.0 | 46000 | 0.3869 | 0.9383 | 0.9458 | 0.9363 | 0.9400 | 0.9383 | 0.9399 | 0.9383 | 0.9381 | 0.9835 | 0.9630 | 0.9054 | 0.9711 | 0.9391 | 0.9962 | 0.9004 | 0.8328 | 0.9409 | 0.8841 | 0.9064 | 0.9541 | 0.9945 |
0.0009 | 47.0 | 47000 | 0.3955 | 0.937 | 0.9448 | 0.9353 | 0.9389 | 0.937 | 0.9389 | 0.937 | 0.9368 | 0.9814 | 0.9630 | 0.8997 | 0.9711 | 0.9391 | 0.9962 | 0.8932 | 0.8265 | 0.9409 | 0.8877 | 0.9113 | 0.9541 | 0.9945 |
0.0019 | 48.0 | 48000 | 0.3959 | 0.9375 | 0.9452 | 0.9359 | 0.9395 | 0.9375 | 0.9393 | 0.9375 | 0.9373 | 0.9814 | 0.9630 | 0.9026 | 0.9711 | 0.9391 | 0.9962 | 0.8932 | 0.8265 | 0.9409 | 0.8877 | 0.9163 | 0.9541 | 0.9945 |
0.0011 | 49.0 | 49000 | 0.3951 | 0.9377 | 0.9454 | 0.9361 | 0.9397 | 0.9377 | 0.9396 | 0.9377 | 0.9376 | 0.9814 | 0.9630 | 0.9026 | 0.9711 | 0.9391 | 0.9962 | 0.8932 | 0.8297 | 0.9409 | 0.8877 | 0.9163 | 0.9541 | 0.9945 |
0.0006 | 50.0 | 50000 | 0.3958 | 0.9377 | 0.9454 | 0.9361 | 0.9397 | 0.9377 | 0.9396 | 0.9377 | 0.9376 | 0.9814 | 0.9630 | 0.9026 | 0.9711 | 0.9391 | 0.9962 | 0.8932 | 0.8297 | 0.9409 | 0.8877 | 0.9163 | 0.9541 | 0.9945 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for marcelovidigal/ModernBERT-base-2-contract-sections-classification-v4-50-512
Base model
answerdotai/ModernBERT-base