Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

ModernBERT-base-2-contract-sections-classification-v4-50-1024

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4160
  • Accuracy Evaluate: 0.9353
  • Precision Evaluate: 0.9380
  • Recall Evaluate: 0.9337
  • F1 Evaluate: 0.9345
  • Accuracy Sklearn: 0.9353
  • Precision Sklearn: 0.9376
  • Recall Sklearn: 0.9353
  • F1 Sklearn: 0.9352
  • Acuracia Rotulo Objeto: 0.9897
  • Acuracia Rotulo Obrigacoes: 0.9613
  • Acuracia Rotulo Valor: 0.8653
  • Acuracia Rotulo Vigencia: 0.9738
  • Acuracia Rotulo Rescisao: 0.9280
  • Acuracia Rotulo Foro: 0.9962
  • Acuracia Rotulo Reajuste: 0.8897
  • Acuracia Rotulo Fiscalizacao: 0.8454
  • Acuracia Rotulo Publicacao: 0.9507
  • Acuracia Rotulo Pagamento: 0.8841
  • Acuracia Rotulo Casos Omissos: 0.9113
  • Acuracia Rotulo Sancoes: 0.9541
  • Acuracia Rotulo Dotacao Orcamentaria: 0.9890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Evaluate Precision Evaluate Recall Evaluate F1 Evaluate Accuracy Sklearn Precision Sklearn Recall Sklearn F1 Sklearn Acuracia Rotulo Objeto Acuracia Rotulo Obrigacoes Acuracia Rotulo Valor Acuracia Rotulo Vigencia Acuracia Rotulo Rescisao Acuracia Rotulo Foro Acuracia Rotulo Reajuste Acuracia Rotulo Fiscalizacao Acuracia Rotulo Publicacao Acuracia Rotulo Pagamento Acuracia Rotulo Casos Omissos Acuracia Rotulo Sancoes Acuracia Rotulo Dotacao Orcamentaria
0.5171 1.0 1000 0.9144 0.732 0.7887 0.7494 0.7499 0.732 0.7735 0.732 0.7332 0.8822 0.6886 0.4556 0.6745 0.8033 0.8846 0.7509 0.7224 0.8276 0.4565 0.8227 0.9266 0.8462
0.2169 2.0 2000 0.6043 0.8325 0.8593 0.8461 0.8475 0.8325 0.8407 0.8325 0.8308 0.8926 0.8182 0.5587 0.7638 0.9003 0.9885 0.8434 0.7571 0.8818 0.8659 0.8571 0.8991 0.9725
0.1396 3.0 3000 0.4994 0.8602 0.8659 0.8764 0.8660 0.8602 0.8679 0.8602 0.8596 0.9050 0.8148 0.6447 0.8924 0.8061 0.9923 0.8932 0.8202 0.9655 0.8587 0.9015 0.9266 0.9725
0.1134 4.0 4000 0.4213 0.8925 0.8971 0.8970 0.8943 0.8925 0.8959 0.8925 0.8917 0.9483 0.8822 0.7249 0.9475 0.9363 0.9962 0.8505 0.7823 0.8966 0.8841 0.9015 0.9266 0.9835
0.09 5.0 5000 0.4038 0.9012 0.9057 0.9062 0.9046 0.9012 0.9031 0.9012 0.9010 0.9669 0.8687 0.7966 0.9318 0.9391 1.0 0.8648 0.8170 0.9163 0.8587 0.9064 0.9358 0.9780
0.0569 6.0 6000 0.4327 0.8925 0.8914 0.9055 0.8959 0.8925 0.8965 0.8925 0.8917 0.9773 0.7609 0.7966 0.9685 0.9307 0.9962 0.8470 0.8202 0.9507 0.8913 0.9015 0.9358 0.9945
0.0573 7.0 7000 0.3939 0.911 0.9142 0.9140 0.9122 0.911 0.9140 0.911 0.9108 0.9835 0.8939 0.7536 0.9633 0.9307 0.9962 0.8790 0.8675 0.9015 0.8696 0.9113 0.9541 0.9780
0.0433 8.0 8000 0.3762 0.92 0.9204 0.9193 0.9174 0.92 0.9238 0.92 0.9200 0.9814 0.9512 0.7822 0.9659 0.9197 0.9923 0.8790 0.8423 0.9015 0.8768 0.9261 0.9541 0.9780
0.0267 9.0 9000 0.3790 0.9215 0.9290 0.9192 0.9221 0.9215 0.9255 0.9215 0.9214 0.9855 0.9461 0.7851 0.9764 0.9335 0.9923 0.8754 0.8580 0.8867 0.8804 0.9064 0.9450 0.9780
0.0242 10.0 10000 0.4134 0.9153 0.9131 0.9174 0.9095 0.9153 0.9259 0.9153 0.9174 0.9876 0.9259 0.8252 0.9475 0.8476 0.9962 0.8577 0.8833 0.9113 0.8913 0.8966 0.9725 0.9835
0.0257 11.0 11000 0.3048 0.9365 0.9361 0.9346 0.9346 0.9365 0.9371 0.9365 0.9361 0.9835 0.9579 0.8596 0.9816 0.9529 0.9923 0.8826 0.8612 0.9163 0.8986 0.9163 0.9633 0.9835
0.0164 12.0 12000 0.3451 0.9313 0.9320 0.9292 0.9290 0.9313 0.9336 0.9313 0.9312 0.9773 0.9613 0.8768 0.9659 0.9446 0.9923 0.8719 0.8486 0.9163 0.8623 0.9212 0.9633 0.9780
0.0182 13.0 13000 0.3905 0.9275 0.9395 0.9254 0.9307 0.9275 0.9310 0.9275 0.9273 0.9917 0.9579 0.7908 0.9685 0.9363 0.9962 0.8897 0.8707 0.9409 0.8623 0.8966 0.9450 0.9835
0.0089 14.0 14000 0.4056 0.929 0.9340 0.9290 0.9301 0.929 0.9313 0.929 0.9286 0.9897 0.9579 0.8080 0.9685 0.9363 0.9962 0.8612 0.8454 0.9557 0.8913 0.9113 0.9725 0.9835
0.007 15.0 15000 0.3713 0.9313 0.9279 0.9321 0.9285 0.9313 0.9331 0.9313 0.9310 0.9773 0.9461 0.8539 0.9790 0.9280 0.9962 0.8790 0.8391 0.9310 0.9094 0.9163 0.9725 0.9890
0.0067 16.0 16000 0.3521 0.934 0.9322 0.9332 0.9316 0.934 0.9355 0.934 0.9340 0.9711 0.9596 0.8711 0.9764 0.9197 0.9885 0.9004 0.8644 0.9261 0.8913 0.9163 0.9633 0.9835
0.0053 17.0 17000 0.3731 0.9325 0.9337 0.9306 0.9305 0.9325 0.9346 0.9325 0.9322 0.9814 0.9630 0.8567 0.9816 0.9391 1.0 0.8861 0.8265 0.9163 0.8841 0.9163 0.9633 0.9835
0.005 18.0 18000 0.3707 0.9343 0.9337 0.9343 0.9329 0.9343 0.9359 0.9343 0.9341 0.9855 0.9512 0.8596 0.9711 0.9335 0.9962 0.8683 0.8675 0.9507 0.8877 0.9113 0.9633 1.0
0.0037 19.0 19000 0.3963 0.9343 0.9333 0.9337 0.9319 0.9343 0.9375 0.9343 0.9345 0.9897 0.9293 0.9054 0.9816 0.9307 0.9962 0.8683 0.8675 0.9458 0.8768 0.9015 0.9450 1.0
0.0026 20.0 20000 0.4162 0.9293 0.9343 0.9258 0.9283 0.9293 0.9324 0.9293 0.9291 0.9897 0.9613 0.8539 0.9790 0.9307 0.9923 0.8897 0.8328 0.9212 0.8551 0.9015 0.9450 0.9835
0.0021 21.0 21000 0.3894 0.9337 0.9364 0.9312 0.9326 0.9337 0.9357 0.9337 0.9336 0.9897 0.9630 0.8625 0.9659 0.9363 0.9962 0.8826 0.8517 0.9261 0.8877 0.9064 0.9541 0.9835
0.0018 22.0 22000 0.3775 0.9355 0.9354 0.9338 0.9334 0.9355 0.9372 0.9355 0.9353 0.9855 0.9596 0.8510 0.9764 0.9335 0.9962 0.8897 0.8770 0.9458 0.8804 0.9064 0.9541 0.9835
0.003 23.0 23000 0.3692 0.9353 0.9353 0.9337 0.9334 0.9353 0.9368 0.9353 0.9351 0.9855 0.9579 0.8711 0.9711 0.9335 0.9962 0.8861 0.8612 0.9261 0.8913 0.9113 0.9633 0.9835
0.0036 24.0 24000 0.4267 0.9285 0.9309 0.9271 0.9267 0.9285 0.9317 0.9285 0.9283 0.9793 0.9697 0.8539 0.9711 0.9224 0.9923 0.8861 0.8265 0.9163 0.8587 0.9113 0.9817 0.9835
0.0034 25.0 25000 0.4385 0.928 0.9338 0.9253 0.9273 0.928 0.9321 0.928 0.9281 0.9876 0.9613 0.8481 0.9711 0.9141 0.9962 0.8861 0.8423 0.9310 0.8659 0.8966 0.9450 0.9835
0.0021 26.0 26000 0.3957 0.9363 0.9364 0.9368 0.9349 0.9363 0.9388 0.9363 0.9364 0.9773 0.9428 0.8940 0.9790 0.9391 0.9962 0.8790 0.8675 0.9507 0.8841 0.8966 0.9725 1.0
0.0038 27.0 27000 0.4856 0.9227 0.9351 0.9218 0.9265 0.9227 0.9288 0.9227 0.9234 0.9917 0.9478 0.8109 0.9580 0.9169 0.9923 0.8612 0.8580 0.9360 0.8696 0.9015 0.9450 0.9945
0.0035 28.0 28000 0.4028 0.9353 0.9375 0.9325 0.9337 0.9353 0.9374 0.9353 0.9352 0.9917 0.9596 0.8596 0.9738 0.9280 0.9962 0.9146 0.8644 0.9212 0.8732 0.9113 0.9450 0.9835
0.0022 29.0 29000 0.4053 0.9367 0.9420 0.9345 0.9373 0.9367 0.9385 0.9367 0.9366 0.9876 0.9596 0.8539 0.9790 0.9529 0.9923 0.8861 0.8738 0.9458 0.8659 0.9064 0.9450 1.0
0.0017 30.0 30000 0.3755 0.936 0.9365 0.9347 0.9347 0.936 0.9375 0.936 0.9358 0.9855 0.9579 0.8510 0.9790 0.9307 0.9962 0.8932 0.8738 0.9507 0.8768 0.9113 0.9450 1.0
0.0025 31.0 31000 0.4102 0.9347 0.9403 0.9320 0.9347 0.9347 0.9375 0.9347 0.9348 0.9917 0.9630 0.8711 0.9685 0.9280 0.9962 0.8826 0.8580 0.9458 0.8768 0.9064 0.9450 0.9835
0.0011 32.0 32000 0.4056 0.935 0.9369 0.9330 0.9338 0.935 0.9371 0.935 0.9350 0.9876 0.9596 0.8653 0.9738 0.9280 0.9962 0.8861 0.8612 0.9507 0.8804 0.9064 0.9450 0.9890
0.0009 33.0 33000 0.4007 0.936 0.9380 0.9339 0.9348 0.936 0.9381 0.936 0.9360 0.9876 0.9596 0.8653 0.9738 0.9363 0.9962 0.8861 0.8644 0.9507 0.8804 0.9064 0.9450 0.9890
0.0021 34.0 34000 0.4073 0.9327 0.9368 0.9302 0.9322 0.9327 0.9351 0.9327 0.9326 0.9876 0.9596 0.8481 0.9816 0.9307 0.9962 0.8897 0.8549 0.9163 0.8768 0.9064 0.9450 1.0
0.0023 35.0 35000 0.3993 0.9355 0.9389 0.9345 0.9353 0.9355 0.9377 0.9355 0.9354 0.9835 0.9579 0.8797 0.9790 0.9252 0.9923 0.8861 0.8549 0.9507 0.8804 0.9064 0.9633 0.9890
0.0 36.0 36000 0.3990 0.9365 0.9383 0.9342 0.9353 0.9365 0.9381 0.9365 0.9364 0.9897 0.9596 0.8625 0.9790 0.9363 0.9962 0.8897 0.8644 0.9507 0.8768 0.9064 0.9450 0.9890
0.001 37.0 37000 0.3950 0.9393 0.9406 0.9376 0.9383 0.9393 0.9405 0.9393 0.9391 0.9897 0.9596 0.8625 0.9790 0.9363 0.9923 0.9039 0.8801 0.9507 0.8804 0.9113 0.9541 0.9890
0.001 38.0 38000 0.3969 0.9373 0.9400 0.9349 0.9366 0.9373 0.9388 0.9373 0.9372 0.9876 0.9613 0.8596 0.9790 0.9363 0.9962 0.8932 0.8707 0.9458 0.8841 0.9064 0.9450 0.9890
0.0 39.0 39000 0.4129 0.9367 0.9370 0.9356 0.9352 0.9367 0.9385 0.9367 0.9366 0.9876 0.9596 0.8596 0.9790 0.9280 0.9923 0.8897 0.8770 0.9507 0.8804 0.9064 0.9633 0.9890
0.002 40.0 40000 0.4130 0.9335 0.9346 0.9332 0.9325 0.9335 0.9354 0.9335 0.9332 0.9835 0.9613 0.8596 0.9738 0.9280 0.9923 0.8897 0.8328 0.9507 0.8877 0.9113 0.9725 0.9890
0.0007 41.0 41000 0.3864 0.939 0.9441 0.9365 0.9395 0.939 0.9402 0.939 0.9388 0.9876 0.9630 0.8625 0.9764 0.9557 0.9962 0.9039 0.8612 0.9458 0.8768 0.9113 0.9450 0.9890
0.0006 42.0 42000 0.4130 0.936 0.9388 0.9349 0.9359 0.936 0.9375 0.936 0.9358 0.9876 0.9596 0.8367 0.9790 0.9418 0.9962 0.8897 0.8738 0.9507 0.8804 0.9064 0.9633 0.9890
0.0007 43.0 43000 0.4165 0.9367 0.9388 0.9346 0.9358 0.9367 0.9384 0.9367 0.9366 0.9897 0.9596 0.8510 0.9790 0.9363 0.9962 0.8897 0.8770 0.9507 0.8804 0.9064 0.9450 0.9890
0.001 44.0 44000 0.4147 0.9357 0.9370 0.9349 0.9346 0.9357 0.9378 0.9357 0.9356 0.9897 0.9613 0.8596 0.9738 0.9307 0.9923 0.8897 0.8612 0.9507 0.8768 0.9064 0.9725 0.9890
0.0017 45.0 45000 0.4130 0.9363 0.9371 0.9342 0.9346 0.9363 0.9382 0.9363 0.9362 0.9897 0.9596 0.8653 0.9764 0.9307 0.9962 0.8897 0.8612 0.9507 0.8804 0.9113 0.9450 0.9890
0.0 46.0 46000 0.4122 0.936 0.9409 0.9336 0.9361 0.936 0.9381 0.936 0.9359 0.9897 0.9613 0.8625 0.9764 0.9307 0.9962 0.8897 0.8644 0.9507 0.8804 0.9064 0.9450 0.9835
0.001 47.0 47000 0.4153 0.9353 0.9377 0.9340 0.9344 0.9353 0.9376 0.9353 0.9352 0.9897 0.9613 0.8653 0.9738 0.9280 0.9962 0.8897 0.8454 0.9507 0.8841 0.9113 0.9633 0.9835
0.0015 48.0 48000 0.4161 0.9355 0.9382 0.9340 0.9347 0.9355 0.9379 0.9355 0.9354 0.9897 0.9613 0.8682 0.9738 0.9280 0.9962 0.8897 0.8454 0.9507 0.8841 0.9113 0.9541 0.9890
0.0008 49.0 49000 0.4165 0.935 0.9378 0.9335 0.9343 0.935 0.9373 0.935 0.9349 0.9897 0.9613 0.8653 0.9738 0.9280 0.9962 0.8897 0.8454 0.9507 0.8804 0.9113 0.9541 0.9890
0.0005 50.0 50000 0.4160 0.9353 0.9380 0.9337 0.9345 0.9353 0.9376 0.9353 0.9352 0.9897 0.9613 0.8653 0.9738 0.9280 0.9962 0.8897 0.8454 0.9507 0.8841 0.9113 0.9541 0.9890

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
150M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for marcelovidigal/ModernBERT-base-2-contract-sections-classification-v4-50-1024

Finetuned
(511)
this model