ModernBERT-base-2-contract-sections-classification-v4-10-1024
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4077
- Accuracy Evaluate: 0.9
- Precision Evaluate: 0.9119
- Recall Evaluate: 0.9038
- F1 Evaluate: 0.9061
- Accuracy Sklearn: 0.9
- Precision Sklearn: 0.9031
- Recall Sklearn: 0.9
- F1 Sklearn: 0.8996
- Acuracia Rotulo Objeto: 0.9731
- Acuracia Rotulo Obrigacoes: 0.8771
- Acuracia Rotulo Valor: 0.7192
- Acuracia Rotulo Vigencia: 0.9528
- Acuracia Rotulo Rescisao: 0.9446
- Acuracia Rotulo Foro: 0.9923
- Acuracia Rotulo Reajuste: 0.8683
- Acuracia Rotulo Fiscalizacao: 0.8423
- Acuracia Rotulo Publicacao: 0.9064
- Acuracia Rotulo Pagamento: 0.8623
- Acuracia Rotulo Casos Omissos: 0.8966
- Acuracia Rotulo Sancoes: 0.9358
- Acuracia Rotulo Dotacao Orcamentaria: 0.9780
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.529 | 1.0 | 1000 | 0.9404 | 0.7238 | 0.7893 | 0.7401 | 0.7414 | 0.7238 | 0.7739 | 0.7238 | 0.7242 | 0.8946 | 0.6751 | 0.4384 | 0.6325 | 0.8283 | 0.8769 | 0.7331 | 0.7413 | 0.8621 | 0.4094 | 0.8030 | 0.9083 | 0.8187 |
0.2306 | 2.0 | 2000 | 0.6074 | 0.841 | 0.8638 | 0.8549 | 0.8543 | 0.841 | 0.8481 | 0.841 | 0.8388 | 0.8781 | 0.8249 | 0.5415 | 0.8556 | 0.9030 | 0.9846 | 0.8505 | 0.7445 | 0.9409 | 0.8514 | 0.8670 | 0.8991 | 0.9725 |
0.1523 | 3.0 | 3000 | 0.5212 | 0.8562 | 0.8655 | 0.8700 | 0.8631 | 0.8562 | 0.8616 | 0.8562 | 0.8546 | 0.8946 | 0.8418 | 0.5903 | 0.8871 | 0.8393 | 0.9962 | 0.8932 | 0.7823 | 0.9606 | 0.8478 | 0.8966 | 0.9083 | 0.9725 |
0.1231 | 4.0 | 4000 | 0.4573 | 0.8788 | 0.8925 | 0.8873 | 0.8872 | 0.8788 | 0.8828 | 0.8788 | 0.8779 | 0.9545 | 0.8367 | 0.6619 | 0.9370 | 0.9030 | 0.9962 | 0.8612 | 0.7950 | 0.9458 | 0.8659 | 0.8916 | 0.9083 | 0.9780 |
0.101 | 5.0 | 5000 | 0.4354 | 0.8872 | 0.8960 | 0.8983 | 0.8954 | 0.8872 | 0.8905 | 0.8872 | 0.8871 | 0.9628 | 0.8182 | 0.7593 | 0.8793 | 0.9391 | 0.9962 | 0.8719 | 0.8170 | 0.9557 | 0.8587 | 0.9064 | 0.9358 | 0.9780 |
0.0687 | 6.0 | 6000 | 0.4196 | 0.8962 | 0.9050 | 0.9042 | 0.9030 | 0.8962 | 0.8985 | 0.8962 | 0.8957 | 0.9587 | 0.8468 | 0.7249 | 0.9554 | 0.9446 | 0.9885 | 0.8790 | 0.8265 | 0.9557 | 0.8587 | 0.9015 | 0.9358 | 0.9780 |
0.0747 | 7.0 | 7000 | 0.4255 | 0.8928 | 0.9067 | 0.9009 | 0.9017 | 0.8928 | 0.8966 | 0.8928 | 0.8924 | 0.9649 | 0.8316 | 0.7221 | 0.9554 | 0.9446 | 0.9923 | 0.8648 | 0.8360 | 0.9360 | 0.8478 | 0.8966 | 0.9358 | 0.9835 |
0.0627 | 8.0 | 8000 | 0.4168 | 0.8965 | 0.9073 | 0.9028 | 0.9031 | 0.8965 | 0.8999 | 0.8965 | 0.8961 | 0.9752 | 0.8384 | 0.7393 | 0.9580 | 0.9474 | 0.9923 | 0.8577 | 0.8391 | 0.9163 | 0.8623 | 0.8966 | 0.9358 | 0.9780 |
0.0485 | 9.0 | 9000 | 0.4104 | 0.898 | 0.9089 | 0.9041 | 0.9048 | 0.898 | 0.9018 | 0.898 | 0.8979 | 0.9731 | 0.8418 | 0.7536 | 0.9501 | 0.9446 | 0.9923 | 0.8683 | 0.8486 | 0.9064 | 0.8587 | 0.9015 | 0.9358 | 0.9780 |
0.048 | 10.0 | 10000 | 0.4077 | 0.9 | 0.9119 | 0.9038 | 0.9061 | 0.9 | 0.9031 | 0.9 | 0.8996 | 0.9731 | 0.8771 | 0.7192 | 0.9528 | 0.9446 | 0.9923 | 0.8683 | 0.8423 | 0.9064 | 0.8623 | 0.8966 | 0.9358 | 0.9780 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for marcelovidigal/ModernBERT-base-2-contract-sections-classification-v4-10-1024
Base model
answerdotai/ModernBERT-base