whisper-small-best / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
9ffbbd5
|
raw
history blame
2.14 kB
metadata
language:
  - de
license: apache-2.0
tags:
  - sbb-asr
  - generated_from_trainer
datasets:
  - marccgrau/sbbdata_allSNR
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: Whisper Large-v2 German SBB ASR
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: SBB Dataset 05.01.2023
          type: marccgrau/sbbdata_allSNR
          args: 'config: German, split: train, test, val'
        metrics:
          - type: wer
            value: 0.023462270133164237
            name: Wer

Whisper Large-v2 German SBB ASR

This model is a fine-tuned version of openai/whisper-small on the SBB Dataset 05.01.2023 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0277
  • Wer: 0.0235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.3449 0.36 100 0.2158 0.0387
0.0647 0.71 200 0.0266 0.0197
0.0308 1.07 300 0.0315 0.0216
0.0188 1.42 400 0.0286 0.0197
0.0136 1.78 500 0.0298 0.0209
0.0089 2.14 600 0.0277 0.0235

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1
  • Datasets 2.8.0
  • Tokenizers 0.12.1