Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d376bd9c5b91ed9d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d376bd9c5b91ed9d_train_data.json
  type:
    field_input: Periodicidad.Nombre
    field_instruction: Publicacion.Nombre
    field_output: Nombre
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/372489da-2504-4f46-9ac2-b4e1d3a969a1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/d376bd9c5b91ed9d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: eddysang
wandb_mode: online
wandb_name: dcda8a0b-9862-4c0b-9bf9-503d4d4d26d7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: dcda8a0b-9862-4c0b-9bf9-503d4d4d26d7
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false

372489da-2504-4f46-9ac2-b4e1d3a969a1

This model is a fine-tuned version of VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4871

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0142 1 3.6024
2.5759 0.1281 9 2.1299
1.3371 0.2561 18 1.2179
0.9719 0.3842 27 0.9338
0.8813 0.5122 36 0.7543
0.6897 0.6403 45 0.6555
0.5713 0.7683 54 0.5969
0.5599 0.8964 63 0.5561
0.5751 1.0245 72 0.5272
0.4452 1.1525 81 0.5082
0.4279 1.2806 90 0.4902
0.4107 1.4086 99 0.4871

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mamung/372489da-2504-4f46-9ac2-b4e1d3a969a1

Adapter
(272)
this model