See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d376bd9c5b91ed9d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d376bd9c5b91ed9d_train_data.json
type:
field_input: Periodicidad.Nombre
field_instruction: Publicacion.Nombre
field_output: Nombre
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/372489da-2504-4f46-9ac2-b4e1d3a969a1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/d376bd9c5b91ed9d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: eddysang
wandb_mode: online
wandb_name: dcda8a0b-9862-4c0b-9bf9-503d4d4d26d7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: dcda8a0b-9862-4c0b-9bf9-503d4d4d26d7
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
372489da-2504-4f46-9ac2-b4e1d3a969a1
This model is a fine-tuned version of VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4871
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0142 | 1 | 3.6024 |
2.5759 | 0.1281 | 9 | 2.1299 |
1.3371 | 0.2561 | 18 | 1.2179 |
0.9719 | 0.3842 | 27 | 0.9338 |
0.8813 | 0.5122 | 36 | 0.7543 |
0.6897 | 0.6403 | 45 | 0.6555 |
0.5713 | 0.7683 | 54 | 0.5969 |
0.5599 | 0.8964 | 63 | 0.5561 |
0.5751 | 1.0245 | 72 | 0.5272 |
0.4452 | 1.1525 | 81 | 0.5082 |
0.4279 | 1.2806 | 90 | 0.4902 |
0.4107 | 1.4086 | 99 | 0.4871 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.