Model Trained Using AutoTrain

  • Problem type: Tabular regression

Validation Metrics

  • r2: 0.3033866286277771
  • mse: 1798692953.5327067
  • mae: 31881.1203125
  • rmse: 42411.00038354091
  • rmsle: 0.20291934835125106
  • loss: 42411.00038354091

Best Params

  • learning_rate: 0.10040353638173113
  • reg_lambda: 0.006827780870976135
  • reg_alpha: 0.006625264866744126
  • subsample: 0.25905346245387173
  • colsample_bytree: 0.2072843639904269
  • max_depth: 4
  • early_stopping_rounds: 122
  • n_estimators: 7000
  • eval_metric: rmse

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)

# predictions can be converted to original labels using label_encoders.pkl
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .