metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- precision
- recall
- f1
model-index:
- name: distilhubert-finetuned-en-alphabets
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.9568733153638813
- name: Recall
type: recall
value: 0.9481132075471698
- name: F1
type: f1
value: 0.9470261780589487
distilhubert-finetuned-en-alphabets
This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4601
- Precision: 0.9569
- Recall: 0.9481
- F1: 0.9470
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
2.7834 | 1.0 | 112 | 2.5326 | 0.4167 | 0.3726 | 0.3135 |
1.9668 | 2.0 | 224 | 1.6729 | 0.7006 | 0.7311 | 0.6796 |
1.4503 | 3.0 | 336 | 1.1778 | 0.8548 | 0.8302 | 0.8096 |
1.0224 | 4.0 | 448 | 0.8461 | 0.9041 | 0.8915 | 0.8869 |
0.8504 | 5.0 | 560 | 0.6392 | 0.9266 | 0.9198 | 0.9182 |
0.6555 | 6.0 | 672 | 0.5410 | 0.9536 | 0.9481 | 0.9466 |
0.5653 | 7.0 | 784 | 0.4801 | 0.9546 | 0.9481 | 0.9460 |
0.5328 | 8.0 | 896 | 0.4601 | 0.9569 | 0.9481 | 0.9470 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.2.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0