File size: 3,926 Bytes
fcffdde 1603dcb fcffdde 1603dcb fcffdde 1603dcb fcffdde 1603dcb fcffdde 1603dcb fcffdde 1603dcb fcffdde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
base_model: mistralai/Mistral-7B-v0.1
library_name: peft
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: mistral-test-alpaca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
lora_fan_in_fan_out: false
data_seed: 49
seed: 49
datasets:
- path: sample_data/alpaca_synth_queries.jsonl
type: sharegpt
conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./ft-v2
hub_model_id: mahendra0203/mistral-test-alpaca
adapter: qlora
lora_model_dir:
sequence_len: 512 # Reduced from 896
sample_packing: true # Enable sample packing
eval_sample_packing: false
pad_to_sequence_len: false # Changed to false
lora_r: 16 # Reduced from 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: ft-alpaca-mistral-hc
wandb_entity: mahendra0203
gradient_accumulation_steps: 8 # Increased from 4
micro_batch_size: 4 # Reduced from 16
eval_batch_size: 4 # Reduced from 16
num_epochs: 2
max_steps: 1000
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
max_grad_norm: 1.0
adam_beta2: 0.95
adam_epsilon: 0.00001
save_total_limit: 3 # Reduced from 12
train_on_inputs: false
group_by_length: true # Changed to true
bf16: true # Changed to false
fp16: false # Changed to true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: false
flash_attention: false
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 20
evals_per_epoch: 2 # Reduced from 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 2 # Reduced from 6
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
save_safetensors: true
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mahendra0203/ft-alpaca-mistral-hc/runs/78qqsr2h)
# mistral-test-alpaca
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3251
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 49
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3818 | 0.6667 | 1 | 1.3490 |
| 1.3841 | 1.1667 | 2 | 1.3251 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |